Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Hazard Mater ; 470: 134293, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615646

RESUMO

Imidacloprid enters the water environment through rainfall and causes harm to aquatic crustaceans. However, the potential chronic toxicity mechanism of imidacloprid in crayfish has not been comprehensively studied. In this study, red claw crayfish (Cherax quadricarinatus) were exposed to 11.76, 35.27, or 88.17 µg/L imidacloprid for 30 days, and changes in the physiology and biochemistry, gut microbiota, and transcriptome of C. quadricarinatus and the interaction between imidacloprid, gut microbiota, and genes were studied. Imidacloprid induced oxidative stress and decreased growth performance in crayfish. Imidacloprid exposure caused hepatopancreas damage and decreased serum immune enzyme activity. Hepatopancreatic and plasma acetylcholine decreased significantly in the 88.17 µg/L group. Imidacloprid reduced the diversity of the intestinal flora, increased the abundance of harmful flora, and disrupted the microbiota function. Transcriptomic analysis showed that the number of up-and-down-regulated differentially expressed genes (DEGs) increased significantly with increasing concentrations of imidacloprid. DEG enrichment analyses indicated that imidacloprid inhibits neurotransmitter transduction and immune responses and disrupts energy metabolic processes. Crayfish could alleviate imidacloprid stress by regulating antioxidant and detoxification-related genes. A high correlation was revealed between GST, HSPA1s, and HSP90 and the composition of gut microorganisms in crayfish under imidacloprid stress. This study highlights the negative effects and provides detailed sequencing data from transcriptome and gut microbiota to enhance our understanding of the molecular toxicity of imidacloprid in crustaceans.


Assuntos
Astacoidea , Microbioma Gastrointestinal , Neonicotinoides , Nitrocompostos , Transcriptoma , Poluentes Químicos da Água , Animais , Neonicotinoides/toxicidade , Astacoidea/efeitos dos fármacos , Astacoidea/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Nitrocompostos/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo
2.
Fish Shellfish Immunol ; 147: 109437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360192

RESUMO

Antimicrobial peptides (AMPs), which are widely present in animals and plants, have a broad distribution, strong broad-spectrum antibacterial activity, low likelihood of developing drug resistance, high thermal stability and antiviral properties. The present study investigated the effects of adding AMPs from Hermetia illucens larvae on the growth performance, muscle composition, antioxidant capacity, immune response, gene expression, antibacterial ability and intestinal microbiota of Cherax quadricarinatus (red claw crayfish). Five experimental diets were prepared by adding 50 (M1), 100 (M2), 150 (M3) and 200 (M4) mg/kg of crude AMP extract from H. illucens larvae to the basal diet feed, which was also used as the control (M0). After an eight-week feeding experiment, it was discovered that the addition of 100-150 mg/kg of H. illucens larvae AMPs to the feed significantly improved the weight gain rate and specific growth rate of C. quadricarinatus. Furthermore, the addition of H. illucens larvae AMPs to the feed had no significant effect on the moisture content, crude protein, crude fat and ash content of the C. quadricarinatus muscle. The addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed also increased the antioxidant capacity, nonspecific immune enzyme activity and related gene expression levels in C. quadricarinatus, thereby enhancing their antioxidant capacity and immune function. The H. illucens larvae AMPs improved the structure and composition of the intestinal microbiota of C. quadricarinatus, increasing the microbial community diversity of the crayfish gut. Finally, the addition of 100-150 mg/kg of H. illucens larvae AMPs in the feed enhanced the resistance of C. quadricarinatus against Aeromonas hydrophila, improving the survival rate of the crayfish. Based on the aforementioned findings, it is recommended that H. illucens larvae AMPs be incorporated into the C. quadricarinatus feed at a concentration of 100-150 mg/kg.


Assuntos
Dípteros , Microbioma Gastrointestinal , Animais , Larva/microbiologia , Astacoidea , Aeromonas hydrophila/genética , Peptídeos Antimicrobianos , Antioxidantes , Dieta , Expressão Gênica , Antibacterianos
3.
Fish Shellfish Immunol ; 145: 109363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185392

RESUMO

Astaxanthin is one of the important immunopotentators in aquaculture. However, little is known about the physiological changes and stress resistance effects of astaxanthin in marine gastropods. In this study, the effects of different astaxanthin concentrations (0, 25, 50, 75, and 100 mg/kg) on the growth, muscle composition, immune function, and resistance to ammonia stress in Babylonia areolata were investigated after three months of rearing. With the increase in astaxanthin content, the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of B. areolata showed an increasing trend. The 75-100 mg/kg group was significantly higher than the control group (0 mg/kg). There was no significant difference in the flesh shell ratio (FSR), viscerosomatic index (VSI), and soft tissue index (STI) of the experimental groups. Astaxanthin (75 mg/kg) significantly increased muscle crude protein content and increased hepatopancreas alkaline phosphatase (AKP), superoxide dismutase (SOD), and catalase (CAT) activity. Astaxanthin (75-100 mg/kg) significantly increased the total antioxidant capacity (T-AOC) and acid phosphatase (ACP) of the hepatopancreas and decreased the malondialdehyde (MDA) content of B. areolata. Astaxanthin significantly induced the expression levels of functional genes, such as SOD, Cu/ZnSOD, ferritin, ACP, and CYC in hepatopancreas and increased the survival rate of B. areolata under ammonia stress. The addition of 75-100 mg/kg astaxanthin to the feed improved the growth performance, muscle composition, immune function, and resistance to ammonia stress of B. areolata.


Assuntos
Amônia , Gastrópodes , Animais , Dieta , Antioxidantes/metabolismo , Gastrópodes/metabolismo , Imunidade Inata , Expressão Gênica , Músculos/metabolismo , Superóxido Dismutase/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Xantofilas
4.
Fish Shellfish Immunol ; 145: 109288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104697

RESUMO

This study aimed to evaluate the potential benefits of chitosan oligosaccharide (COS) on red claw crayfish (Cherax quadricarinatus) and explore its underlying mechanisms. The crayfish were randomly divided into six groups, and the diets were supplemented with COS at levels of 0 (C0), 0.2 (C1), 0.4 (C2), 0.6 (C3), 0.8 (C4), and 1 (C5) g kg-1. Treatment with COS significantly improved the growth performance of the crayfish with a higher weight gain rate (WGR) and specific growth rate (SGR) in the C2 group compared to the C0 group. Additionally, the content of crude protein in the crayfish muscles in the C1 group was significantly higher than that of the C0 group. Regarding non-specific immunity, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and alkaline phosphatase (AKP), and the levels of expression of the genes related to immunity (SOD; anti-lipopolysaccharide factor [ALF]; thioredoxin1 [Trx1]; C-type lysozyme, [C-LZM]; and GSH-Px) in the hepatopancreas and hemolymph increased significantly (P < 0.05) after supplementation with 0.4 g kg-1 of COS, while the content of malondialdehyde (MDA) decreased (P < 0.05). The survival rate of C. quadricarinatus increased (P < 0.05) in the C2, C3, C4, and C5 groups after the challenge with Aeromonas hydrophila. This study found that COS has the potential to modulate the composition of the intestinal microbiota and significantly reduce the abundance of species of the phylum Proteobacteria and the genera Aeromonas and Vibrio in the gut of C. quadricarinatus, while the abundance of bacteria in the phylum Firmicutes and the genus Candidatus_Hepatoplasma improved significantly. This study suggests that the inclusion of COS in the diet of C. quadricarinatus can enhance growth, boost immunity, and increase resistance to infection with A. hydrophila, especially when supplemented at 0.4-0.8 g kg-1.


Assuntos
Quitosana , Microbioma Gastrointestinal , Animais , Astacoidea , Quitosana/farmacologia , Dieta , Suplementos Nutricionais/análise , Superóxido Dismutase/metabolismo , Oligossacarídeos/farmacologia , Imunidade Inata , Ração Animal/análise
5.
Antioxidants (Basel) ; 12(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891881

RESUMO

Alpinia oxyphylla is a homology of medicine and food. This study aims to investigate the dominant chemical composition and explore the antioxidant properties of the ethanol extract of the leaves and stems of A. oxyphylla (AOE) on juvenile shrimp, Litopenaeus vannamei. An in vitro test showed that AOE and its dominant chemical composition procyanidin B-2 (1) and epicatechin (2) presented DPPH and ABTS radical scavenging activities. A shrimp feeding supplement experiment revealed that shrimp growth parameters and muscle composition were improved significantly when fed with a 200 mg/Kg AOE additive. Meanwhile, the activities of antioxidant enzymes (CAT, GSH-Px, SOD, and T-AOC) in serum and the liver and the expression of related genes (LvMn-SOD, LvCAT, LvproPo, and LvGSH-Px) were enhanced with various degrees in different AOE additive groups while the content of MDA was significantly decreased. Moreover, the antioxidative effect of AOE additive groups on shrimp was also observed in an acute ammonia nitrogen stress test.

6.
Fish Shellfish Immunol ; 141: 109050, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666313

RESUMO

4-Nonylphenol (4-NP) is one of the common endocrine-disrupting chemicals (EDCs) in estuaries and coastal zones, which can exert detrimental effects on the physiological function of aquatic organisms. However, the molecular response triggered by 4-NP remains largely unknown in Pacific white shrimp (Litopenaeus vannamei). In this study, transcriptomic analysis was performed to investigate the underlying mechanisms of 4-NP toxicity in the hepatopancreas of L. vannamei. Nine RNA-Seq libraries were generated from L. vannamei at 0 h, 24 h, and 48 h following exposure to 4-NP. Compared with 0 h vs 24 h, 962 up- and 463 down-regulated differentially expressed genes (DEGs) were identified, indicating that many genes in L. vannamei were induced to resist adverse circumstances by 4-NP exposure. In contrast, 902 up- and 1027 down-regulated DEGs were revealed in the comparison of 0 h vs 48 h, demonstrating that prolonged exposure to the stress from 4-NP resulted in more inhibited genes. To validate the accuracy of the transcriptome data, eight DEGs were selected for quantitative real-time polymerase chain reaction (qRT-PCR), which were consistent with the RNA-Seq results. Through KEGG pathway enrichment analysis, three specific pathways related to hormonal effects and endocrine function of L. vannamei were enriched significantly, including tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. After 4-NP stress, genes involved in tyrosine metabolism (Tyr) and melanogenesis pathway (AC, CBP, Wnt, Frizzled, Tcf, and Ras) were induced to promote melanin pigment to help shrimp resist adverse environments. In the insect hormone biosynthesis, ALDH, CYP15A1, CYP15A1/C1, and JHE genes were activated to synthesize juvenile hormone (JH), while Spook, Phm, Sad, and CYP18A1 were induced to generate molting hormone. There is an enhanced interaction between the molting hormone and JH, with JH playing a dominant role and maintaining its "classic status quo action". Our study demonstrated that 4-NP exposure led to impairments of biological functions in L. vannamei hepatopancreas. The genes and pathways identified provide novel insights into the molecular mechanisms underlying 4-NP toxicity effects in prawns and enrich the information on the toxicity mechanism of crustaceans in response to EDCs exposure.


Assuntos
Hepatopâncreas , Penaeidae , Animais , Hepatopâncreas/metabolismo , Ecdisona/análise , Ecdisona/metabolismo , Ecdisona/farmacologia , Perfilação da Expressão Gênica , Transcriptoma , Penaeidae/fisiologia , Tirosina/metabolismo
7.
Fish Shellfish Immunol ; 132: 108505, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36581251

RESUMO

Red claw crayfish (Cherax quadricarinatus) is an important freshwater shrimp species worldwide with enormous economic value. Waterless transportation is an inherent feature of red claw crayfish transportation. However, the high mortality of red claw crayfish is a severe problem in the aquaculture of crayfish after waterless transportation. In this study, we investigated the responses of the hepatopancreas from the red claw crayfish undergoing air exposure stress and normal conditions on transcriptome levels. We used Illumina-based RNA sequencing (RNA-Seq) to perform a transcriptome analysis from the hepatopancreas of red claw crayfish challenged by air exposure. An average of 57,148,800 clean reads per library was obtained, and 33,567 unigenes could be predicted and classified according to their homology with matches in the National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), Gene Ontology (GO), a manually annotated and reviewed protein sequence database (Swiss-Prot), protein families (Pfam), Clusters of Orthologous Groups (COG) of proteins, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 690 and 3407 differentially expressed genes (DEGs) were identified between the two stress stages of the red claw crayfish. More DEGs were identified in 12 h, indicating that gene expressions were largely changed at 12 h. Some immune-related pathways and genes were identified according to KEGG and GO enrichment analysis. A total of 12 DEGs involved in immune response and trehalose mechanism were verified by quantitative real-time-polymerase chain reaction (qRT-PCR). The results indicated that the red claw crayfish might counteract the stress of air exposure at the transcriptomic level by increasing expression levels of antioxidant-, immune-, and trehalose metabolism-related genes. These transcriptome results from the hepatopancreas provide significant insights into the influence mechanism of air exposure to the trehalose mechanism and immune response in the red claw crayfish.


Assuntos
Astacoidea , Hepatopâncreas , Animais , Astacoidea/genética , Trealose/metabolismo , Perfilação da Expressão Gênica/veterinária , Transcriptoma
8.
Fish Shellfish Immunol ; 127: 280-294, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35752371

RESUMO

This study aimed to investigate the effects of Elephantopus scaber extract on the GIFT (genetic improvement of farmed tilapia) strain of Nile tilapia Oreochromis niloticus. A total of 800 tilapia with an initial body weight of 1.34 ± 0.09 g each were randomly divided into five groups. The tilapia in the control group (E0 group) were fed on a basal diet only. Meanwhile, tilapia in the four experimental groups were fed on a basal diet supplemented with 1 g/kg (E1 group), 3 g/kg (E2 group), 5 g/kg (E3 group), and 7 g/kg (E4 group) of E. scaber extract for 10 weeks. Results showed that the survival rate was higher in the experimental groups than in the control group. Compared with the control group, some growth parameters (FW, WGR, SGR, VSI, and HSI) were significantly improved in the E1 group and E2 group. The crude lipid content in the dorsal muscle and liver was lower in the E1 group than in the control group. After E. scaber extract supplementation, activities of immunity-related enzymes (ACP, AKP, T-AOC, SOD, CAT, GSH-Px and LZM) in plasma, liver, spleen and head kidney, and expressions of immunity-related genes (IL-1ß, IFN-γ, TNF-α, and CCL-3) in liver, spleen and head kidney showed various degrees of improvement, while MDA content and Hsp70 expression level were decreased. The survival rate of tilapia increased in all the supplementation groups after Streptococcus agalactiae treatment. E. scaber extract addition changed the species composition, abundance, and diversity of intestinal microbiota in tilapia. These results demonstrate that E. scaber extract supplementation in diet can improve the growth, immunity, and disease resistance of GIFT against S. agalactiae. E. scaber extract supplementation can also change intestinal microbiota and reduce crude lipid content in dorsal muscle and liver. The above indicators show that the optimal dose of E. scaber extract for GIFT is 1 g/kg.


Assuntos
Asteraceae , Ciclídeos , Doenças dos Peixes , Microbioma Gastrointestinal , Infecções Estreptocócicas , Tilápia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Lipídeos , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Tilápia/metabolismo
9.
Fish Shellfish Immunol ; 119: 524-532, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34737131

RESUMO

This study was performed to investigate the effects of dietary trehalose on growth, muscle composition, non-specific immune responses, gene expression and desiccation resistance of juvenile red claw crayfish (Cherax quadricarinatus). A total of 540 (body weight of 0.41 ± 0.05) crayfish were randomly divided into six groups for a feeding experiment. Six diets with trehalose levels at 0 (Diet 1), 1 (Diet 2), 2 (Diet 3), 5 (Diet 4), 10 (Diet 5) and 15 (Diet 6) g kg-1 were prepared to feed juvenile red claw crayfish for 8 weeks. The results showed that the weight gain rate (WGR) and specific growth rate (SGR) of crayfish in Diet 4, Diet 5 and Diet 6 groups were significantly improved compared with the control group (Diet 1). Muscle crude protein contents of crayfish fed Diet 4, Diet 5 and Diet 6 were significantly higher than those of the control group. The activities of superoxide dismutase (SOD) and alkaline phosphatase (AKP) in hepatopancreas and hemolymph of crayfish for Diet 4, Diet 5, and Diet 6 groups were significantly increased while malondialdehyde (MDA) content was significantly reduced when compared with the control. The total antioxidant capacity (T-AOC), catalase (CAT) and glutathione peroxidase (GPx) activities in the hepatopancreas and hemolymph of crayfish fed Diet 5 and Diet 6 were significantly higher than those in the control group. However, acid phosphatase (ACP) activity was not significantly different among all experimental groups. The hepatopancreas and intestine trehalose contents of crayfish showed an upward trend with the increase of dietary trehalose levels. Compared with the control group, supplementation of 5-15 g kg-1 trehalose in the feed up-regulated the expression levels of GPx, C-type lysozyme (C-LZM), antilipolysacchride factor (ALF), facilitated trehalose transporter homolog isoform X2 (Tret1-2) and facilitated trehalose transporter isoform X4 (Tret1-4) mRNA. In addition, supplementation of 5-15 g kg-1 trehalose in the feed could improve the survival rate of red claw crayfish under desiccation stress. These results suggested that supplementation of 5-15 g kg-1 trehalose in feed could significantly improve the growth performance, muscle protein, non-specific immunity and desiccation resistance of juvenile red claw crayfish.


Assuntos
Astacoidea , Trealose , Ração Animal/análise , Animais , Antioxidantes , Astacoidea/genética , Dessecação , Dieta/veterinária , Suplementos Nutricionais/análise , Expressão Gênica , Imunidade Inata/genética
10.
Fish Shellfish Immunol ; 86: 662-671, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30537530

RESUMO

Glutaredoxin (Grx) is a class molecule oxidoreductase, which can regulate the redox state of proteins and plays a key role in antioxidant defense. However, the informations of Grx cDNA sequences and their functions are lack in decapod crustacea. In the present study, the cDNA of LvGrx 2 was cloned from the Pacific white shrimp, Litopenaeus vannamei. The open reading frame (ORF) of LvGrx 2 was 360 bp, which encoded a polypeptide of 119 amino acids. The molecular mass of the predicted protein is 12.87 kDa with an estimated pI of 8.22. Sequence alignment showed that the amino acid sequence of LvGrx 2 shares 59%, 59% and 58% identity with that of the coelacanth Latimeria chalumnae, the plateau frog Nanorana parkeri and the half-smooth tongue sole Cynoglossus semilaevis, respectively. Quantitative real-time PCR analysis revealed that LvGrx 2 were detected in a wide range of tissues, with highest expression in gill, hepatopancrea and intestine, and weakest expression in muscle. The expression responses of LvGrx 2 were analyzed in hepatopancrea and gill after ammonia-N stress or lipopolysaccharide (LPS) injection. During ammonia-N exposure, the LvGrx 2 transcriptions in hepatopancrea and gill significantly up-regulated, and the peak value appeared after 12 h and 24 h exposure respectively. After LPS injection, expression levels of LvGrx 2 in hepatopancrea obviously increased in the early and late stages, while LvGrx 2 transcription in gill sharply up-regulated in the middle period. These results suggest that LvGrx 2 may play a vital role in shrimp defense system against environmental stress and pathogen infection. RNA interference experiment was designed to further probe roles of LvGrx 2 during ammonia-N exposure. Ammonia-N induced obvious improvement in expression levels of LvGrx 2, LvGrx 3, GPx, GST and Trx, accompanied by increases of protein carbonyl and malondialdehyde (MDA) contents. However, transcription of GPx and GST were much weaker in LvGrx 2 interfered-shrimp, and oxidative damage in both lipid and protein were more serious. These results further suggest that LvGrx 2 in shrimp participates in oxidative defence and regulation of antioxidant system.


Assuntos
Glutarredoxinas/genética , Penaeidae/genética , Amônia/administração & dosagem , Animais , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica , Intestinos , Lipopolissacarídeos/administração & dosagem , Músculos , Fases de Leitura Aberta , Filogenia , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
11.
Fish Shellfish Immunol ; 73: 272-278, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29277696

RESUMO

Oxidative burst, release of reactive oxygen species/reactive nitrogen species (ROS/RNS) contributed to microorganisms killing, is a vital immune response of crustacean haemocyte. Three morphologic haemocyte types (hyaline cells, HC; semigranular cells, SGC; granular cells, GC) have been defined in crustaceans, and found to play different roles in immune defense. However, oxidative burst activities of different haemocyte subpopulations in crustaceans are currently not documented. In the present study, we investigated the oxidative burst activities of the three haemocyte types in the freshwater prawn Macrobrachium rosenbergii using the common ROS fluorescent probe dichlorofluorescin-diacetate (DCFH-DA). Nitric oxide (NO) donor sodium nitroprusside (SNP) improved the DCF fluorescence in haemocytes, while NO scavenger C-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and NO-synthase inhibitor NG-monomethyl-l-arginine (L-NMMA) reduced the fluorescence, suggesting that DCF fluorescence intensity could also be modified by intracellular NO level and activity of NO-synthase pathway. ROS/RNS was also produced in the untreated haemocytes. GC contained most non-induced ROS/RNS production, while oxidative activity of HC was rather weak. No significant impact of PMA could be observed on ROS/RNS level in all the three cell types. Both zymosan A (ZA) and lipopolysaccharide (LPS) significantly triggered the production of ROS/RNS in SGC and GC, whereas they had no effect on those of HC, suggesting that SGC and GC were the primary cell types involved in pathogens killing by ROS/RNS pathway. Cytochalasin B (Cyt B) inhibited the ZA-induced ROS/RNS production, but could not change the ROS/RNS level stimulated by LPS. For unstimulated haemocytes, ROS/RNS productions decreased 29.6%, 44.1% and 48.6% in SGC, and decreased 44.5%, 28.4% and 57.3% in GC, in the presence of L-NMMA, Fccp and DPI respectively, whereas apocynin could not modulate DCF fluorescence in both SGC and GC, suggesting that mitochondrial oxidative pathway was relatively more dominant in SGC, and NO-synthase (NOS) pathway appeared more active in GC. For LPS-stimulated haemocytes, oxidative activities decreased 22.9%, 42.9%, 29.6% and 60.0% in SGC, and reduced 40.6%, 25.2%, 26.7% and 70.6% in GC with the presence of L-NMMA, apocynin, Fccp and DPI respectively, suggesting that NADPH-oxidase (NOX) pathway in both SGC and GC was activated by LPS, and it became the predominant oxidative pathway in stimulated SGC, while NOS pathway was the relative main source for ROS/RNS production in stimulated GC.


Assuntos
Hemócitos/metabolismo , Palaemonidae/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Animais , Citometria de Fluxo , Hemócitos/classificação , Hemócitos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia
12.
Fish Shellfish Immunol ; 74: 62-68, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29288812

RESUMO

This study was aimed at investigating the cellular responses of Penaeus monodon haemocytes to poly I:C stimulation using flow cytometric assay. Total haemocyte count (THC), percentages of different haemocyte subpopulations [hyaline cells (HC), semigranular cells (SGC) and granular cells (GC)], non-specific esterase activity (EA), total reactive oxygen species/reactive nitrogen species (ROS/RNS) production, nitric oxide (NO) production, apoptotic haemocyte ratio and plasmic phenoloxidase (PO) activity were determined in poly I:C-injected shrimp. Results showed that poly I:C at a low dose (5 µg shrimp-1) caused obvious increases in THC, GC proportion, ROS/RNS production and NO production, but had no significant effect on EA, apoptosis and PO activity. In the early stage of poly I:C injection at a high dose (20 µg shrimp-1), THC and GC proportion improvements could also be observed, suggesting that GC might be induced to release from hemocytopoietic or other tissues to participate in immune response, and this subpopulation might be the main cell type involved in the cellular defence against virus. In the later period, proportions of both GC and SGC reduced paralleled by THC reduction, indicating that depletion of GC and SGC was mainly contributed to the reduced count of circulating haemocyte. Obvious increases in ROS/RNS production and NO production were induced in haemocyte of shrimp under a high dose of poly I:C stimulation, but only slight rise of EA and suppression of PO activity could be observed in poly I:C-stimulated shrimp, suggesting that ROS/RNS-dependent system was vital in the immune defence of shrimp against virus. On the other hand, increase of apoptotic haemocyte ratio and THC reduction were presented after the drastic increases of ROS/RNS and NO productions, implying that the stimulated ROS/RNS might be excess and harmful, and was the major factor for the haemocyte apoptosis and depletion. THC recovered after 48 h injection, while haemocyte apoptosis also returned to the control level, suggesting that apoptosis might be contributed to eliminate damaged, weak or infected haemocytes to renew the circulating haemocytes, and it could be considered as an important defending strategy against virus.


Assuntos
Hemócitos/imunologia , Penaeidae/imunologia , Poli I-C/farmacologia , Animais , Citometria de Fluxo , Hemócitos/efeitos dos fármacos , Penaeidae/efeitos dos fármacos
13.
Fish Shellfish Immunol ; 69: 195-199, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28842372

RESUMO

Different haemocyte types have been reported to play diverse roles in immune defense of shrimp. To investigate the roles of the three haemocyte types [hyaline cells (HC), semigranular cells (SGC) and granular cells (GC)] of shrimp in immune responses against lipopolysaccharide (LPS), percentage, non-specific esterase activity (EA), reactive oxygen species (ROS) production and nitric oxide (NO) production of the three haemocyte subpopulations were analyzed in LPS-injected Penaeus monodon using flow cytometry. Results showed that percentage of HC increased after 3 h injection, and returned to the original level after 48 h. Proportion of SGC and GC reduced after 6-36 h and 3-12 h respectively, and recovered to the initial level after 48 and 24 h respectively. Loss of SGC and GC might be related to degranulation to release proPO system, and degranulation of GC seemed more sensitive to LPS stimulation. EA of both HC and SGC improved after 3-6 h injection, while EA of GC was induced after 3-24 h. No significant effect of LPS injection could be found in ROS production and NO production of HC. Enhanced ROS levels was observed in SGC and GC after 3-24 h and 3-36 h respectively, and NO production of SGC and GC improved after 3-48 h injection. These results demonstrated that SGC and GC possessed strong capabilities for LPS-induced EA, ROS production and NO production, while HC only displayed EA response to LPS, suggesting that GC and SGC play the main role in immune defense of shrimp against Gram-negative bacteria.


Assuntos
Proteínas de Artrópodes/metabolismo , Carboxilesterase/metabolismo , Hemócitos/imunologia , Óxido Nítrico/metabolismo , Penaeidae/imunologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Escherichia coli/química , Hemócitos/classificação , Lipopolissacarídeos/farmacologia , Penaeidae/enzimologia , Penaeidae/metabolismo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA