Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 181: 109028, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173485

RESUMO

Despite extensive algorithms for epilepsy prediction via machine learning, most models are tailored for offline scenarios and cannot handle actual scenarios where data changes over time. Catastrophic forgetting(CF) for learned electroencephalogram(EEG) data occurs when EEG changes dynamically in the clinical setting. This paper implements a continual learning(CL) strategy Memory Projection(MP) for epilepsy prediction, which can be combined with other algorithms to avoid CF. Such a strategy enables the model to learn EEG data from each patient in dynamic subspaces with weak correlation layer by layer to minimize interference and promote knowledge transfer. Regularization Loss Reconstruction Algorithm and Matrix Dimensionality Reduction Algorithm are introduced into the core of MP. Experimental results show that MP exhibits excellent performance and low forgetting rates in sequential learning of seizure prediction. The forgetting rate of accuracy and sensitivity under multiple experiments are below 5%. When learning from multi-center datasets, the forgetting rates for accuracy and sensitivity decrease to 0.65% and 1.86%, making it comparable to state-of-the-art CL strategies. Through ablation experiments, we have analyzed that MP can operate with minimal storage and computational cost, which demonstrates practical potential for seizure prediction in clinical scenarios.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39012755

RESUMO

We study the domain adaptation task for action recognition, namely domain adaptive action recognition, which aims to effectively transfer action recognition power from a label-sufficient source domain to a label-free target domain. Since actions are performed by humans, it is crucial to exploit human cues in videos when recognizing actions across domains. However, existing methods are prone to losing human cues but prefer to exploit the correlation between non-human contexts and associated actions for recognition, and the contexts of interest agnostic to actions would reduce recognition performance in the target domain. To overcome this problem, we focus on uncovering human-centric action cues for domain adaptive action recognition, and our conception is to investigate two aspects of human-centric action cues, namely human cues and human-context interaction cues. Accordingly, our proposed Human-Centric Transformer (HCTransformer) develops a decoupled human-centric learning paradigm to explicitly concentrate on human-centric action cues in domain-variant video feature learning. Our HCTransformer first conducts human-aware temporal modeling by a human encoder, aiming to avoid a loss of human cues during domain-invariant video feature learning. Then, by a Transformer-like architecture, HCTransformer exploits domain-invariant and action-correlated contexts by a context encoder, and further models domain-invariant interaction between humans and action-correlated contexts. We conduct extensive experiments on three benchmarks, namely UCF-HMDB, Kinetics-NecDrone and EPIC-Kitchens-UDA, and the state-of-the-art performance demonstrates the effectiveness of our proposed HCTransformer.

3.
Neural Netw ; 177: 106382, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38761416

RESUMO

Occluded person re-identification (Re-ID) is a challenging task, as pedestrians are often obstructed by various occlusions, such as non-pedestrian objects or non-target pedestrians. Previous methods have heavily relied on auxiliary models to obtain information in unoccluded regions, such as human pose estimation. However, these auxiliary models fall short in accounting for pedestrian occlusions, thereby leading to potential misrepresentations. In addition, some previous works learned feature representations from single images, ignoring the potential relations among samples. To address these issues, this paper introduces a Multi-Level Relation-Aware Transformer (MLRAT) model for occluded person Re-ID. This model mainly encompasses two novel modules: Patch-Level Relation-Aware (PLRA) and Sample-Level Relation-Aware (SLRA). PLRA learns fine-grained local features by modeling the structural relations between key patches, bypassing the dependency on auxiliary models. It adopts a model-free method to select key patches that have high semantic correlation with the final pedestrian representation. In particular, to alleviate the interference of occlusion, PLRA captures the structural relations among key patches via a two-layer Graph Convolution Network (GCN), effectively guiding the local feature fusion and learning. SLRA is designed to facilitate the model to learn discriminative features by modeling the relations among samples. Specifically, to mitigate noisy relations of irrelevant samples, we present a Relation-Aware Transformer (RAT) block to capture the relations among neighbors. Furthermore, to bridge the gap between training and testing phases, a self-distillation method is employed to transfer the sample-level relations captured by SLRA to the backbone. Extensive experiments are conducted on four occluded datasets, two partial datasets and two holistic datasets. The results show that the proposed MLRAT model significantly outperforms existing baselines on four occluded datasets, while maintains top performance on two partial datasets and two holistic datasets.


Assuntos
Redes Neurais de Computação , Pedestres , Humanos , Algoritmos
4.
Int J Biol Macromol ; 268(Pt 1): 131729, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653429

RESUMO

In this case, various characterization technologies have been employed to probe dissociation mechanism of cellulose in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) system. These results indicate that coordination of DMAc ligands to the Li+-Cl- ion pair results in the formation of a series of Lix(DMAc)yClz (x = 1, 2; y = 1, 2, 3, 4; z = 1, 2) complexes. Analysis of interaction between DMAc ligand and Li center indicate that Li bond plays a major role for the formation of these Lix(DMAc)yClz complexes. And the saturation and directionality of Li bond in these Lix(DMAc)yClz complexes are found to be a tetrahedral structure. The hydrogen bonds between two cellulose chains could be broken at the nonreduced end of cellulose molecule via combined effects of basicity of Cl- ion and steric hindrance of [Li (DMAc)4]+ unit. The unique feature of Li bond in Lix(DMAc)yClz complexes is a key factor in determination of the dissociation mechanism.


Assuntos
Acetamidas , Celulose , Cloreto de Lítio , Celulose/química , Acetamidas/química , Cloreto de Lítio/química , Lítio/química , Ligação de Hidrogênio
5.
Artigo em Inglês | MEDLINE | ID: mdl-38683711

RESUMO

Person Re-identification (ReID) has been extensively developed for a decade in order to learn the association of images of the same person across non-overlapping camera views. To overcome significant variations between images across camera views, mountains of variants of ReID models were developed for solving a number of challenges, such as resolution change, clothing change, occlusion, modality change, and so on. Despite the impressive performance of many ReID variants, these variants typically function distinctly and cannot be applied to other challenges. To our best knowledge, there is no versatile ReID model that can handle various ReID challenges at the same time. This work contributes to the first attempt at learning a versatile ReID model to solve such a problem. Our main idea is to form a two-stage prompt-based twin modeling framework called VersReID. Our VersReID firstly leverages the scene label to train a ReID Bank that contains abundant knowledge for handling various scenes, where several groups of scene-specific prompts are used to encode different scene-specific knowledge. In the second stage, we distill a V-Branch model with versatile prompts from the ReID Bank for adaptively solving the ReID of different scenes, eliminating the demand for scene labels during the inference stage. To facilitate training VersReID, we further introduce the multi-scene properties into self-supervised learning of ReID via a multi-scene prioris data augmentation (MPDA) strategy. Through extensive experiments, we demonstrate the success of learning an effective and versatile ReID model for handling ReID tasks under multi-scene conditions without manual assignment of scene labels in the inference stage, including general, low-resolution, clothing change, occlusion, and cross-modality scenes. Codes and models will be made publicly available.

6.
IEEE Trans Image Process ; 33: 1600-1613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38373124

RESUMO

Action quality assessment (AQA) is to assess how well an action is performed. Previous works perform modelling by only the use of visual information, ignoring audio information. We argue that although AQA is highly dependent on visual information, the audio is useful complementary information for improving the score regression accuracy, especially for sports with background music, such as figure skating and rhythmic gymnastics. To leverage multimodal information for AQA, i.e., RGB, optical flow and audio information, we propose a Progressive Adaptive Multimodal Fusion Network (PAMFN) that separately models modality-specific information and mixed-modality information. Our model consists of with three modality-specific branches that independently explore modality-specific information and a mixed-modality branch that progressively aggregates the modality-specific information from the modality-specific branches. To build the bridge between modality-specific branches and the mixed-modality branch, three novel modules are proposed. First, a Modality-specific Feature Decoder module is designed to selectively transfer modality-specific information to the mixed-modality branch. Second, when exploring the interaction between modality-specific information, we argue that using an invariant multimodal fusion policy may lead to suboptimal results, so as to take the potential diversity in different parts of an action into consideration. Therefore, an Adaptive Fusion Module is proposed to learn adaptive multimodal fusion policies in different parts of an action. This module consists of several FusionNets for exploring different multimodal fusion strategies and a PolicyNet for deciding which FusionNets are enabled. Third, a module called Cross-modal Feature Decoder is designed to transfer cross-modal features generated by Adaptive Fusion Module to the mixed-modality branch. Our extensive experiments validate the efficacy of the proposed method, and our method achieves state-of-the-art performance on two public datasets. Code is available at https://github.com/qinghuannn/PAMFN.


Assuntos
Interpretação de Imagem Assistida por Computador , Aprendizado de Máquina
7.
IEEE Trans Pattern Anal Mach Intell ; 46(6): 4188-4205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38227419

RESUMO

Existing studies on knowledge distillation typically focus on teacher-centered methods, in which the teacher network is trained according to its own standards before transferring the learned knowledge to a student one. However, due to differences in network structure between the teacher and the student, the knowledge learned by the former may not be desired by the latter. Inspired by human educational wisdom, this paper proposes a Student-Centered Distillation (SCD) method that enables the teacher network to adjust its knowledge transfer according to the student network's needs. We implemented SCD based on various human educational wisdom, e.g., the teacher network identified and learned the knowledge desired by the student network on the validation set, and then transferred it to the latter through the training set. To address the problems of current deficiency knowledge, hard sample learning and knowledge forgetting faced by a student network in the learning process, we introduce and improve Proportional-Integral-Derivative (PID) algorithms from automation fields to make them effective in identifying the current knowledge required by the student network. Furthermore, we propose a curriculum learning-based fuzzy strategy and apply it to the proposed PID control algorithm, such that the student network in SCD can actively pay attention to the learning of challenging samples after with certain knowledge. The overall performance of SCD is verified in multiple tasks by comparing it with state-of-the-art ones. Experimental results show that our student-centered distillation method outperforms existing teacher-centered ones.


Assuntos
Algoritmos , Estudantes , Humanos , Aprendizado de Máquina , Lógica Fuzzy , Conhecimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA