Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
ACS Appl Mater Interfaces ; 16(37): 49053-49068, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39241037

RESUMO

Immunotherapy has been extensively utilized and studied as a prominent therapeutic strategy for tumors. However, the presence of a hypoxic immunosuppressive tumor microenvironment significantly reduces the efficacy of the treatment, thus impeding its application. In addition, the hypoxic microenvironment can also lead to the enrichment of immunosuppressive cells and reduce the effectiveness of tumor immunotherapy; nanoparticles with biocatalytic activity have the ability to relieve hypoxia in tumor tissues and deliver drugs to target cells and have been widely concerned and applied in the field of tumor therapy. The present study involved the development of a dual nanodelivery system that effectively targets the immune system to modify the tumor microenvironment (TME). The nanodelivery system was developed by incorporating R848 and Imatinib (IMT) into Pt nanozyme loaded hollow polydopamine (P@HP) nanocarriers. Subsequently, their surface was modified with specifically targeted peptides that bind to M2-like macrophages and regulatory T (Treg) cells, thereby facilitating the precise targeting of these cells. When introduced into the tumor model, the nanocarriers were able to selectively target immune cells in tumor tissue, causing M2-type macrophages to change into the M1 phenotype and reducing Treg activation within the tumor microenvironment. In addition, the carriers demonstrated exceptional biocatalytic activity, effectively converting H2O2 into oxygen and water at the tumor site while the drug was active, thereby alleviating the hypoxic inhibitory conditions present in the tumor microenvironment. Additionally, this further enhanced the infiltration of M1-type macrophages and cytotoxic T lymphocytes. Moreover, when used in conjunction with immune checkpoint therapy, the proposed approach demonstrated enhanced antitumor immunotherapeutic effects. The bimodal targeted immunotherapeutic strategy developed in the present study overcomes the drawbacks of traditional immunotherapy approaches while offering novel avenues for the treatment of cancer.


Assuntos
Imunoterapia , Macrófagos , Polímeros , Linfócitos T Reguladores , Microambiente Tumoral , Microambiente Tumoral/efeitos dos fármacos , Animais , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Camundongos , Polímeros/química , Humanos , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Indóis/química , Nanopartículas/química , Linhagem Celular Tumoral , Imidazóis
2.
Heliyon ; 10(17): e36928, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39281513

RESUMO

The solution to the economic dispatch (ED) problem for power systems allows the power sector to reduce operating costs. However, the ED problem is a complex nonlinear and nonconvex optimization problem whose solution requires powerful algorithms. We propose a new version of the Marine Predator Algorithm (MPA), called IMPA, for solving complex ED problems. The algorithm introduces an asymmetric information exchange (AIE) mechanism, which not only accelerates to escape of local optima but also enriches the diversity of search. In this work, 12 benchmark functions were used to test the performance of the proposed algorithm IMPA. Then, the IMPA was used to solve the ED engineering problem of power system containing of 6, 13, 40, and complex 140 units. The minimum and average costs searched by IMPA are 1657962.7265$/h and 1657962.7265$/h, and they are much lower than the results of the MPA and NMPA, which means that our proposed improved IMPA improves the performance of MPA for solving the economic dispatch problem of large-scale power systems. The results show that the solutions obtained by IMPA are more competitive than those of MPA and NMPA, which provides an additional solution for cost reduction of the power system.

3.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119840, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216602

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide with a poor clinical prognosis. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B) is an unidentified protein phosphatase 1 regulatory subunit that is associated with the occurrence and development of various cancers. Recently, PPP1R14B was found to contribute to paclitaxel resistance and cell progression in triple-negative breast cancer; however, the role of PPP1R14B in HCC is unknown. Here, we found that PPP1R14B was highly expressed in HCC tissues, which suggested a poor prognosis. Knockdown of PPP1R14B significantly inhibited the survival and tumorigenic ability of HCC cells, while overexpression of PPP1R14B had the opposite effects. Mechanistically, Ribosomal Protein S6 Kinase type 1(RPS6KA1) was identified as the target gene of PPP1R14B. PPP1R14B maintained the stability and phosphorylation of RPS6KA1, and positively regulated activation of the AKT/NF-κB pathway. Importantly, PPP1R14B-deficient tumor suppression could be partially restored by wild-type but not phosphorylated mutant RPS6KA1. Taken together, these findings shed light on the function and mechanism of PPP1R14B in HCC progression, indicating PPP1R14B is a promising molecular target for the treatment of HCC.

4.
Biochem Pharmacol ; 229: 116473, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127151

RESUMO

Ubiquitin-specific peptidase 24 (USP24), a member of the deubiquitinase family, plays an important role in tumor regulation. However, the role of USP24 in Hepatocellular carcinoma(HCC)is unknown. The aim of our study was to explore the role of USP24 in HCC to seek new therapeutic targets for HCC. In this study, we found that USP24 was aberrantly upregulated in HCC tissues and predicted poor prognosis. USP24 markedly promoted HCC proliferation and progression in vitro and in vivo. Mechanistically, USP24 binds to tumor necrosis factor receptor-associated factor 2(TRAF2) and inhibits its degradation, thereby promoting the accumulation of TRAF2. Upregulation of TRAF2 activated protein kinase B/nuclear factor kappa-B (AKT/ NF-κB) signaling pathway and promoted HCC cell survival. In addition, USP24 positively correlated with programmed cell death ligand 1(PD-L1) expression in HCC, highlighting the clinical significance of USP24 activation in tumor immune evasion. Deletion of USP24 enhanced the tumor-killing ability of CD8+ T cells. Deletion of USP24 combined with anti-PD-1 antibody significantly enhanced the efficacy of HCC immunotherapy. Taken together, USP24 can be employed as a promising target to restrain tumor growth and increase the efficacy of HCC immunotherapy.

5.
Onco Targets Ther ; 17: 171-180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476309

RESUMO

Purpose: Colorectal cancer (CRC) is one of the cancers with high incidence and mortality rates worldwide. In China, there are approximately 400,000 new CRC cases each year, seriously endangering people's life and health. Transforming growth factor ß-stimulated clone 22 domain family, member 2 (TSC22D2) is widely expression in cancers, but the role of TSC22D2 in CRC are still unknown. Methods: Real­time quantitative PCR (qRT-PCR) and Western blot were applied to determine the TSC22D2 levels. CCK-8, colony formation and transwell assays were used to determine the proliferation and metastasis abilities of CRC cells in vitro. In vivo metastatic potential was assessed using a subcutaneously injected mouse model and. Western-blot and immunoprecipitation experiments were used to study the mechanism of TSC22D2­mediated metastasis. Results: We found TSC22D2 was deregulated in CRC tissues and cells and implied poor prognosis. Overexpression TSC22D2 significantly promoted CRC cells proliferation and tumorigenicity both in vitro and vivo, whereas knockdown TSC22D2 resulted in the opposite effects. Importantly using a co-immunoprecipitation (co-IP) assay combined with mass spectrometry analysis to identify TSC22D2-interacting acyl-coenzyme A thioesterases 8 (ACOT8), TSC22D2 maintained stability of ACOT8. Overexpression of TCC22D2 in CRC cells can promote the expression of ACOT8 and inhibit the proliferation and metastasis of CRC cells through EMT mechanism, highlighting the possibility of TSC22D2 as a potential target in CRC development. Conclusion: In summary, the present study revealed the inhibitory effect of TSC22D2 on the proliferation of colorectal cancer cells, suggesting that TSC22D2 may be an important tumor suppressor and a potential therapeutic target during colorectal carcinogenesis.

6.
Biomed Pharmacother ; 173: 116315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394852

RESUMO

Due to resistance and BCR-ABLT315I-mutated, CML remains a clinical challenge. It needs new potential therapeutic targets to overcome CML resistance related to BCR-ABL. Our research revealed that the deubiquitinating enzyme USP28 was highly expressed in BCR-ABL-dependent CML patients. Similarly, a high expression of USP28 was found in the K562 cell line, particularly in the imatinib-resistant strains. Notably, USP28 directly interacted with BCR-ABL. Furthermore, when BCR-ABL and its mutant BCR-ABLT315I were overexpressed in K562-IMR, they promoted the expression of IFITM3. However, when small molecule inhibitors targeting USP28 and small molecule degraders targeting BCR-ABL were combined, they significantly inhibited the expression of IFITM3. The experiments conducted on tumor-bearing animals revealed that co-treated mice showed a significant reduction in tumor size, effectively inhibiting the progression of CML tumors. In summary, USP28 promoted the proliferation and invasion of tumor cells in BCR-ABL-dependent CML by enhancing the expression of IFITM3. Moreover, imatinib resistance might be triggered by the activation of the USP28-BCR-ABL-IFITM3 pathway. Thus, the combined inhibition of USP28 and BCR-ABL could be a promising approach to overcome CML resistance dependent on BCR-ABL.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Humanos , Animais , Camundongos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas de Fusão bcr-abl/metabolismo , Apoptose , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA , Ubiquitina Tiolesterase/metabolismo
7.
Cell Signal ; 117: 111078, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38320625

RESUMO

Hepatocellular carcinoma(HCC) is one of the most common tumors in the world. Human insulin-like growth factor 2(IGF2) mRNA binding protein 2(IGF2BP2) plays an important role in the progression of hepatocellular carcinoma. Additionally, long non-coding RNA(lncRNA) has been confirmed as a key regulator of hepatocellular carcinoma occurrence. However, the function of TRPC7-AS1 has not been verified in hepatocellular carcinoma. The research results revealed that high IGF2BP2 expression was associated with a decreased survival rate in patients with hepatocellular carcinoma. Furthermore, IGF2BP2 knockdown inhibited and IGF2BP2 overexpression promoted the cell proliferation and invasion of hepatocellular carcinoma cells. The research illuminated that IGF2BP2 regulated the expression of TRPC7-AS1, and a correlation was observed between IGF2BP2 and TRPC7-AS1 expression. TRPC7-AS1 silencing repressed and its overexpression promoted the progression of hepatocellular carcinoma. After silencing or overexpressing TRPC7-AS1, the expression of the high-mobility group AT-hook 2 (HMGA2) gene decreased or increased, respectively. IGF2BP2 enhanced the expression of TRPC7-AS1 and thus affected the expression of HMGA2, thereby promoting hepatocellular carcinoma progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Canais de Cátion TRPC/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Biomed Pharmacother ; 170: 115955, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048735

RESUMO

Immune-checkpoint blockade (ICB) therapies have been widely used in clinical treatment of cancer patients, but only 20-30% of patients benefit from immunotherapy. Therefore, it is important to decipher the molecular mechanism of resistance to ICB and develop new combined treatment strategies. PD-L1 up-regulation in tumor cells contributes to the occurrence of immune escape. Increasing evidence shows that its transcription level is affected by multiple factors, which limits the objective response rate of ICB. Fibroblast growth factor 19 (FGF19), a member of the fibroblast growth factor family, is widely involved in the malignant progression of many tumors by binding to fibroblast growth factor receptor 4 (FGFR4). In this study, we confirmed that FGF19 acts as a driver gene in hepatocellular carcinoma (HCC) progression by binding to FGFR4. The up-regulation of FGF19 and FGFR4 in HCC is associated with poor prognosis. We found that FGF19/FGFR4 promoted the proliferation and invasion of HCC cells by driving IGF2BP1 to promote PD-L1 expression. Knockdown of FGFR4 significantly reduced the expression of IGF2BP1/PD-L1 and inhibited the proliferation and invasion of HCC cells. These biological effects are achieved by inhibiting the PI3K/AKT pathway. The combination of FGFR4 knockdown and anti-PD-1 antibody greatly suppressed tumor growth and enhanced the sensitivity of immunotherapy, highlighting the clinical significance of FGF19/FGFR4 activation in immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Antígeno B7-H1/genética , Fosfatidilinositol 3-Quinases , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral
9.
Oncol Rep ; 51(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038167

RESUMO

Synaptopodin 2 (SYNPO2) plays a pivotal role in regulating tumor growth, development and progression in bladder urothelial Carcinoma (BLCA). However, the precise biological functions and mechanisms of SYNPO2 in BLCA remain unclear. Based on TCGA database­derived BLCA RNA sequencing data, survival analysis and prognosis analysis indicate that elevated SYNPO2 expression was associated with poor survival outcomes. Notably, exogenous SYNPO2 expression significantly promoted tumor invasion and migration by upregulating vimentin expression in BLCA cell lines. Enrichment analysis revealed the involvement of SYNPO2 in humoral immune responses and the PI3K/AKT signaling pathway. Moreover, increased SYNPO2 levels increased the sensitivity of BLCA to PI3K/AKT pathway­targeted drugs while being resistant to conventional chemotherapy. In in vivo BLCA mouse models, SYNPO2 overexpression increased pulmonary metastasis of 5637 cells. High SYNPO2 expression led to increased infiltration of innate immune cells, particularly mast cells, in both nude mouse model and clinical BLCA samples. Furthermore, tumor immune dysfunction and exclusion score showed that patients with BLCA patients and high SYNPO2 expression exhibited worse clinical outcomes when treated with immune checkpoint inhibitors. Notably, in the IMvigor 210 cohort, SYNPO2 expression was significantly associated with the population of resting mast cells in BLCA tissue following PD1/PDL1 targeted therapy. In conclusion, SYNPO2 may be a promising prognostic factor in BLCA by modulating mast cell infiltration and exacerbating resistance to immune therapy and conventional chemotherapy.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Mastócitos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Imunoterapia , Prognóstico , Proteínas dos Microfilamentos
10.
J Oncol ; 2022: 4056398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36349200

RESUMO

Inducing protein degradation by proteolysis-targeting chimeras (PROTACs) has gained tremendous momentum in the field for its promise in the discovery and development of new therapies. Based on our previously reported PROTAC BCR-ABL degraders, we designed and synthesized additional 4 PROTAC compounds with a novel linker that contains pyrimidine rings. Molecular and cellular studies have shown that different linkers affect the degradation activity of small-molecule degraders on the target protein of BCR-ABL. We screened out a lead compound, DMP11, with stable physicochemical properties and high activity. Preliminary evaluation of its pharmacodynamics in vitro model showed that it has a good inhibitory effect on imatinib-resistant chronic myeloid leukemia cell lines, as has been shown in animal models. Our preliminary research into the mechanism of DMP11 found that DMP11 can overcome drug resistance by simultaneously inhibiting the targets of BCR-ABL and SRC-family kinase (SFK).

11.
J Physiol Biochem ; 78(3): 679-687, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35674867

RESUMO

Conventional chemotherapy plays a key role in hepatocellular carcinoma (HCC) treatment, however, with intrinsic or acquired chemoresistance being a major constraint. Here, we aimed to identify potential target to reverse such chemoresistance. In the present study, we found significant difference in uridine monophosphate synthetase (UMPS) expression between 5-FU resistant and sensitive HCC cell lines and the overexpression or downregulation of UMPS impacted 5-FU response in HCC cells. We further found that inhibition of UMPS activity with uric acid at concentration present in human plasma decreased the 5-FU sensitivity of HCC cells, while reduction of uric acid levels with uricase improved the 5-FU sensitivity of HCC cells as well as colorectal cancer cells. In vivo studies also suggested that modulation of uric acid levels did affect 5-FU sensitivity of tumors. These data indicated that UMPS was correlated with the 5-FU resistance in HCC cells and uricase sensitized cancer cells to 5-FU through uricase-uric acid-UMP synthase axis, which provided a potential strategy to improve the efficacy of 5-FU-based chemotherapy for human cancers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Neoplasias Hepáticas/metabolismo , Complexos Multienzimáticos , Orotato Fosforribosiltransferase , Orotidina-5'-Fosfato Descarboxilase , Urato Oxidase/uso terapêutico , Ácido Úrico
12.
Int J Mach Learn Cybern ; 13(10): 3159-3172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755890

RESUMO

The anomaly detection for communication networks is significant for improve the quality of communication services and network reliability. However, traditional communication monitoring methods lack proactive monitoring and real-time alerts and the prediction effect of a single machine learning model on communication data containing multiple features is not ideal. To solve the problem, A prediction-then-detection anomaly detection method was proposed, and quantitative assessment of network anomalies was developed. Specifically, anomaly-free data was obtained by eliminating outliers, and the long short-term memory (LSTM) and autoregressive integral moving average (ARIMA) were combined via residual weighting to predict the future state of the key performance indicators (KPI) without outliers. Anomalies were identified using the error comparison between the prediction and actual values, and the network condition was quantified using the scoring method. It is observed that the proposed LSTM-ARIMA hybrid model has better prediction effect, which can well represent the performance of KPIs of the future state, and the prediction-then-detection anomaly detection method has excellent performance on both precision and recall.

13.
Dis Markers ; 2022: 6907057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308136

RESUMO

Background: 5-Fluorouracil (5-FU) has been widely applied in treating cancers. However, its usage is largely limited in hepatocellular carcinoma (HCC), due to acquired resistance. Here, we aim to identify target proteins and investigate their roles in 5-FU sensitivity of HCC cells. Methods: Mass spectrometry (MS) proteomics was performed on 5-FU-resistant cell line (BEL7402/5-FU) and its parental cell line (BEL7402) with 5-FU treatment. In order to identify potential targets, we compared the proteomics between two cell line groups and used bioinformatics tools to select hub proteins from all differentially expressed proteins. Results: We finally focused on a group of cell cycle-related kinases (CDKs). By CCK8 assay, we confirmed that the CDK inhibitor significantly decreased the IC50 of 5-FU-resistant cells. Conclusions: Our study verified that CDK inhibition can reverse 5-FU resistance of HCC cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular , Humanos , Neoplasias Hepáticas/patologia , Espectrometria de Massas , Inibidores de Proteínas Quinases , Proteômica
14.
Food Chem ; 383: 132387, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182862

RESUMO

To characterize the structure of purified raspberry pectin and discuss the impact of different extraction methods on the pectin structure, raspberry pectin was extracted by hot-acid and enzyme method and purified by stepwise ethanol precipitation and ion-exchange chromatography isolation. Enzyme-extracted raspberry pectin (RPE50%-3) presented relatively intact structure with molecular weight of 5 × 104 g/mol and the degree of methylation was 39%. The 1D/2D NMR analysis demonstrated RPE50%-3 was a high-branched pectin mainly containing 50% homogalacturonan, 16% branched α-1,5-arabinan and α-1,3-arabinan, 18% ß-1,4-galactan and ß-1,6-galactan. Acid-extracted raspberry pectin (RPA50%-3) contained less arabinan than RPE50%-3. Moreover, RPE50%-3 inhibited the nitric oxide (NO), TNF-α, IL-6 production of lipopolysaccharide-induced macrophages by 67%, 22% and 46% at the dosage of 200 ug/mL, while the inhibitory rate of RPA50%-3 were 33%, 9%, and 1%, respectively. These results suggested that enzyme-extracted raspberry pectin contained more arabinan sidechains and exhibited better immunomodulatory effect.


Assuntos
Rubus , Anti-Inflamatórios/farmacologia , Galactanos/química , Peso Molecular , Pectinas/química , Polissacarídeos/química
15.
Leuk Res ; 109: 106649, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34271301

RESUMO

The E26 transformation sequence-related gene ERG encodes a transcription factor involved in normal hematopoiesis, and its expression is abnormal in leukemia. Especially in a type of acute lymphoblastic leukemia (ALL) that is refractory and easy to relapse, the expression of ERG protein is abnormally increased. Chemotherapy can alleviate the condition of ALL, but the location and survival mechanism of the remaining ALL cells after chemotherapy are still not fully understood. It is becoming increasingly clear that the interaction between leukemia cells and their microenvironment plays an important role in the acquisition of drug resistance mutations and disease recurrence. We selected an acute lymphocytic leukemia cell line with high ERG expression, and studied the synergistic effect of chemotherapeutics and small molecule peptides through cell proliferation, apoptosis, and cell cycle experiments; At the same time, we inoculated acute lymphocytic leukemia cells with high ERG expression into mice with severe immunodeficiency to simulate human ALL and investigated (i) the effects of co-administration on the nesting and invasion of leukemia cells and (ii) the effects of the small molecule peptide drug EIP, which targets ERG, on the sensitivity of ALL chemotherapy and the underlying mechanisms.Ara-c and EIP synergistically reduces viability of ALL cells with high ERG expression may be achieved by promoting their apoptosis and inhibiting their nesting.


Assuntos
Biomarcadores Tumorais/metabolismo , Citarabina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Quimioterapia Combinada , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Regulador Transcricional ERG/antagonistas & inibidores , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Eur J Med Chem ; 210: 112981, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33160761

RESUMO

Proteolysis targeting chimera (PROTAC), hijacking protein of interest (POI) and recruiting E3 ligase for target degradation via the ubiquitin-proteasome pathway, is a novel drug discovery paradigm which has been widely used as biological tools and medicinal molecules with the potential of clinical application value. Currently, ARV-110, an orally small molecule PROTAC was designed to specifically target Androgen receptor (AR), firstly enters clinical phase I trials for the treatment of metastatic castration-resistant prostate cancer, which turns a new avenue for the development of PROTAC. We herein provide a detail summary on the latest one year progress of PROTAC target various proteins and elucidate the advantages of PROTAC technology. Finally, the potential challenges of this vibrant field are also discussed.


Assuntos
Descoberta de Drogas , Receptores Androgênicos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
17.
Carbohydr Polym ; 245: 116526, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718630

RESUMO

Rhamnogalacturonan I (RG-I) pectin are regarded as strong galectin-3 (Gal-3) antagonist because of galactan sidechains. The present study focused on discussing the effects of more structural regions in pectin on the anti-Gal-3 activity. The water-soluble pectin (WSP) recovered from citrus canning processing water was categorized as RG-I pectin. The controlled enzymatic hydrolysis was employed to sequentially remove the α-1,5-arabinan, homogalaturonan and ß-1,4-galactan in WSP. The Gal-3-binding affinity KD (kd/ka) of WSP and debranched pectins were calculated to be 0.32 µM, 0.48 µM, 0.56 µM and 1.93 µM. Moreover, based on the more sensitive cell line (MCF-7) model, the IC30 value of WSP was lower than these of modified pectins, indicating decreased anti-Gal-3 activity. Our results suggested that the total amount of neutral sugar sidechains, the length of arabinan and cooperation between HG and RG-I played important roles in the anti-Gal-3 activity of WSP, not the Gal/Ara ratio or RG-I/HG ratio. These results provided a new insight into structure-activity relationship of citrus segment membrane RG-I as a galectin-3 antagonist and a new functional food.


Assuntos
Proteínas Sanguíneas/antagonistas & inibidores , Membrana Celular/química , Citrus/química , Galactanos/farmacologia , Galectinas/antagonistas & inibidores , Pectinas/química , Pectinas/farmacologia , Proteínas Sanguíneas/metabolismo , Parede Celular/química , Frutas/química , Galectinas/metabolismo , Humanos , Hidrólise , Células MCF-7 , Pectinas/metabolismo , Células Vegetais , Polissacarídeos/química , Ligação Proteica , Solubilidade , Relação Estrutura-Atividade , Água/química
18.
Food Funct ; 11(5): 4707-4718, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32409814

RESUMO

Ferulic acid (FA) has been shown to have a neuroprotective effect on Alzheimer's disease induced by amyloid-beta (Aß) neurotoxicity. This work aims to ascertain the structure-activity relationship of FA and its alkyl esters (FAEs) for evaluating the antioxidant activities in PC12 cells and Aß1-42 aggregation inhibitory activities in vitro, as well as the signaling mechanisms against oxidative stress elicited by Aß1-42 in PC12 cells. Our data showed that alterations in the subcellular localization and cytotoxicity of FAEs caused by the lipophilicity of FA were crucial when evaluating their antioxidant capacities. Pre-treating cells with butyl ferulate (FAC4) significantly attenuated Aß1-42-evoked intracellular ROS formation. Besides, FAC4 exhibited the highest Aß1-42 aggregation inhibitory effectiveness. The molecular docking results showed that FAC4 binds to amide NH in Gln15 and Lys16 via a hydrogen bond. Notably, FAC4 could upregulate antioxidant defense systems by modulating the Keap1-Nrf2-ARE signaling pathway. Identification of the functions of FAEs could be useful in developing food supplements or drugs for treating AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/efeitos dos fármacos , Ácidos Cumáricos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Animais , Ácidos Cumáricos/administração & dosagem , Ácidos Cumáricos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Ratos
19.
Bioorg Med Chem Lett ; 30(12): 127167, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32317208

RESUMO

Epidermal growth factor receptor (EGFR) is one of the important and valuable drug targets. Overexpression of EGFR is associated with the development of many types of cancer. In this study, three PROTACs small molecules (16a-16c) were designed, synthesized and evaluated for their cytotoxicity against the growth in different NSCLC cell line and the degradation effect. The bioassay results indicated that 16c has a good inhibition in PC9 cells and H1975 cells, and the corresponding IC50 value was 0.413 µM and 0.657 µM, respectively. Western blotting results demonstrated that compound 16c could serve as an effective EGFRdel19-targeting degrader in PC9 cells.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quimera/metabolismo , Lenalidomida/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Acrilamidas/química , Sequência de Aminoácidos , Compostos de Anilina/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Receptores ErbB/metabolismo , Humanos , Lenalidomida/química , Ligação Proteica , Conformação Proteica , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
20.
Sensors (Basel) ; 20(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31978957

RESUMO

Accurate base station traffic data in a public place with large changes in the amount of people could help predict the occurrence of network congestion, which would allow us to effectively allocate network resources. This is of great significance for festival network support, routine maintenance, and resource scheduling. However, there are a few related reports on base station traffic prediction, especially base station traffic prediction in public scenes with fluctuations in people flow. This study proposes a public scene traffic data prediction method, which is based on a v Support Vector Regression (vSVR) algorithm. To achieve optimal prediction of traffic, a symbiotic organisms search (SOS) was adopted to optimize the vSVR parameters. Meanwhile, the optimal input time step was determined through a large number of experiments. Experimental data was obtained at the base station of Huainan Wanda Plaza, in the Anhui province of China, for three months, with the granularity being one hour. To verify the predictive performance of vSVR, the classic regression algorithm extreme learning machine (ELM) and variational Bayesian Linear Regression (vBLR) were used. Their optimal prediction results were compared with vSVR predictions. Experimental results show that the prediction results from SOS-vSVR were the best. Outcomes of this study could provide guidance for preventing network congestion and improving the user experience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA