Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 52(12): 13225-13236, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34662283

RESUMO

How to generate anthropomorphic reaching movement remains a challenging problem in service robots and human motor function repair/reconstruction equipment. However, there is no universally accepted computational model in the literature for reproducing the motion of the human upper limb. In response to the problem, this article presents a computational framework for generating reaching movement endowed with human motion characteristics that imitated the mechanism in the control and realization of human upper limb motions. This article first establishes the experimental paradigm of human upper limb functional movements and proposes the characterization of human upper limb movement characteristics and feature movement clustering methods in the joint space. Then, according to the specific task requirements of the upper limb, combined with the human sensorimotor model, the estimation method of the human upper limb natural postures was established. Next, a continuous task parametric model matching the characteristic motion class is established by using the Gaussian mixture regression method. The anthropomorphic motion generation method with the characteristics of the smooth trajectory and the ability of natural obstacle avoidance is proposed. Finally, the anthropomorphic motion generation method proposed in this article is verified by a human-like robot. The measurement index of the human-likeness degree of the trajectory is given. The experimental results show that for all four tested tasks, the human-likeness degrees were greater than 90.8%, and the trajectories' jerk generated by this method is very similar to the trajectories' jerk of humans, which validates the proposed method.


Assuntos
Robótica , Humanos , Robótica/métodos , Extremidade Superior/fisiologia , Movimento/fisiologia , Postura
2.
Acta Biomater ; 6(2): 684-94, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19643209

RESUMO

Molecular dynamics simulations were carried out to investigate the adsorption mechanisms of tripeptide Arg-Gly-Asp (RGD) on the nanotopography and perfect rutile TiO(2) (110) surfaces in aqueous solution. It is shown that the amino groups (NH(2) and NH3+) and carboxyl group (COO(-)) of RGD are the main groups bonding to hydrophilic TiO(2) surface by electrostatic and van der Waals interactions. It is also demonstrated that RGD adsorbs much more rapidly and stably on the nanotopography surface than the perfect surface. On the hydrophilic TiO(2) surface, the water molecules occupy the adsorption sites to form hydration layers, which have a significant influence on RGD adsorption. On the perfect surface, since the fivefold titanium atom is surrounded by surface bridging oxygen atoms above it and has a water molecule bonding to it, the amino group NH(2) is the adsorption group. However, because the pit surface exposes more adsorption sites and has higher surface energy, RGD can adsorb rapidly on the surfaces by amino groups NH(2) and NH3+, and the carboxyl group COO(-) may edge out the adsorbed water molecules and bond to the surface titanium atom. Moreover, the surface with higher surface energy has more adsorption energy of RGD.


Assuntos
Nanotecnologia , Oligopeptídeos/química , Titânio/química , Ligação de Hidrogênio , Modelos Moleculares , Soluções , Propriedades de Superfície , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA