Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Mar Pollut Bull ; 205: 116566, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38875971

RESUMO

The dinoflagellate cysts present in the ballast water sediment of foreign ships in Shanghai Port have not been previously studied. Therefore, sediment samples were collected from the ballast water of 16 foreign ships in Shanghai Port, and the types of dinoflagellate cysts were identified and their abundance was calculated, with a specific focus on the analysis of toxic and harmful dinoflagellates. Moreover, simulations of temperature and salinity conditions throughout the year in the Shanghai port waters were conducted to carry out dinoflagellate cyst germination experiments, with analyze and compare the germinated dinoflagellate cysts under different conditions. Dinoflagellate cysts were found in 100 % of the ship sediment samples, including a total of 9 species of toxic and harmful dinoflagellate cysts. In the germination experiment, 15 °C was found to be the optimal temperature for the germination of dinoflagellate cysts in ballast water sediment, and high salinity is more favorable for cyst germination.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121997, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308824

RESUMO

Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), often found in polluted air, are carcinogenic and mutagenic. The nitro group increases the spin-orbit coupling and results in the lowest excited triplet (T1) on the picosecond time scale with a high yield. The electron-donating substituents have a significant influence on the photophysics and photochemistry of nitro-PAHs. We used transient absorption spectroscopy and kinetic analysis to investigate the reactivities of the T1 state 1-methoxy-4-nitronaphthalene (3MeO-NN) and 1-methyl-4-nitronaphthalene (3Me-NN). The results show that the methoxy and methyl substitutions have a minor effect on their hydrogen abstraction and electron accepting abilities. The main distinction is their reaction rates towards protons. The second order rate constant of 3MeO-NN towards protons is three orders of magnitude greater than that of 3Me-NN, indicating that 3MeO-NN has a stronger hydrogen bond accepting ability. The kinetic analysis reveals that the dimer of 2,2,2-trifluoroethanol participates in the reaction with 3MeO-NN. These results suggest that the formation of the hydrogen-bonded complex is responsible for the unusually short lifetime of 3MeO-NN in methanol solution and the lack of hydrogen abstraction radicals during the decay of 3MeO-NN in methanol.


Assuntos
Elétrons , Hidrocarbonetos Policíclicos Aromáticos , Cinética , Prótons , Metanol , Hidrocarbonetos Policíclicos Aromáticos/química
3.
Phys Chem Chem Phys ; 25(1): 402-409, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36477748

RESUMO

8-Hydroxy-5-nitroquinoline (NO2-QN-OH) is an antimicrobial, anti-inflammatory and anticancer agent, and has been approved for use in the treatment of diseases. Its photosensitivity, however, cannot be overlooked. The photochemistry of 8-hydroxy-5-nitroquinoline in acetonitrile is investigated using transient absorption and time-resolved resonance Raman spectroscopies. By identifying the short-lived intermediates during the photoreaction, it is clear that the Tn state NO2-QN-OH is generated in 0.8 ps via an ultrafast ISC, followed by the IC in 8.5 ps to produce the T1 state. In neat acetonitrile, the T1 state NO2-QN-OH undergoes intramolecular proton transfer and tautomerizes to form T1 state NO2-QNH-O. To our knowledge, this is the first time that the intramolecular excited state proton transfer of hydroxyl-quinolines in an aprotic polar solvent is observed.


Assuntos
Dióxido de Nitrogênio , Prótons , Análise Espectral Raman , Solventes/química
4.
Phys Chem Chem Phys ; 24(30): 18427-18434, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35881619

RESUMO

Hydroxyaromatic compounds (ArOHs) have a wide range of applications in catalytic synthesis and biological processes due to their increased acidity upon photo-excitation. The proton transfer of ArOHs via the excited singlet state has been extensively studied. However, there has still been a debate on the unique type of ArOH that can undergo an ultrafast intersystem crossing. The nitro group in p-nitrophenylphenol (NO2-Bp-OH) enhances the spin-orbit coupling between excited singlet states and the triplet manifold, enabling ultrafast intersystem crossing and the formation of the long-lived lowest excited triplet state (T1) with a high yield. In this work, we used time-resolved transient absorption to investigate the excited state proton transfer of NO2-Bp-OH in its T1 state to t-butylamine, methanol, and ethanol. The T1 state of the deprotonated form NO2-Bp-O- was first observed and identified in the case of t-butylamine. Kinetic analysis demonstrates that the formation of the hydrogen-bonded complex with methanol and ethanol as proton acceptors involves their trimers. The alcohol oligomer size required in the excited state proton transfer process is dependent on the excited acidity of photoacid.


Assuntos
Aminas , Prótons , Aminas/química , Butilaminas , Etanol , Cinética , Metanol , Dióxido de Nitrogênio
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119762, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930854

RESUMO

Photophysical and photochemical reactions of microsolvation clusters are attracting an increasing attention due to their wide applications in materials science and biology. In this paper, 1, 2, 4-triazole-3-thione (3TT) is investigated in solid, protic, and aprotic solvents using FT-Raman, resonance Raman and electronic absorption spectroscopic experiments. The structures of microsolvation clusters in solvents were confirmed by 488 nm Raman spectroscopy combining with density functional theory (DFT) calculation. Steady-state absorption and resonance Raman spectra of 3TT in different environments indicate that the intermolecular hydrogen bonding may reveal important insights in the photophysical and photochemical process. With the aid of DFT and time-dependent density functional theory (TDDFT) calculations, we assigned the observed Raman spectra to the microsolvation clusters in acetonitrile, water and methanol, and carried out preliminary investigations on spectrum shifts of UV and Raman spectra due to the hydrogen bonding with the solvent molecules. The intermolecular >NH···O and >=S···H hydrogen bonding interactions, which are the key constituents of stable thione structure of 3TT, revealed the obvious spectrum shifts of 3TT, including Raman and absorption shifts in CH3CN, CH3OH and H2O. The hydrogen bond sites were further confirmed to be located on the functional group SCNH of 3TT with CH3CN, H2O and CH3OH.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119651, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33765534

RESUMO

The vibrational frequency shift in the C=O stretch mode of 2-thiophenecarboxaldehyde (2TC) in the condensed phase is still not fully understood. In this paper, the vibrational spectra of 2TC were investigated using the FT-Raman, FT-IR and resonance Raman spectroscopies in conjunction with the density functional theory calculation. The pure compound (in the neat liquid) exhibits three vibrational bands 1658, 1672 and 1687 cm-1 in the νC=O spectral region. It differs from the band pair 1672 and 1682 cm-1 for 2-cyclohexene-1-one (CHO) and the single band 1700 cm-1 for benzaldehyde. The relative intensities of observed bands vary with the polarity of aprotic solvents and the compound's concentration. In a diluted solution, the strongest band in the resonance Raman spectra of 2TC appears the C=O stretch mode at 1690 cm-1 in cyclohexane and 1674/1675 cm-1 in acetonitrile. The imparting factors that shift the C=O stretch mode frequency in the neat liquid and solvents with different polarities were examined. The spectral sources of the vibrational bands at 1658 and 1672 cm-1 in the neat liquid and a dilute solution were determined, and the resonance Raman spectra were assigned. It is concluded that tetramers and monomer are the major sources of the bands at 1658 and 1672 cm-1 in the neat liquid, respectively, while the monomer is the main source of the bands at 1674/1675 cm-1 in acetonitrile and the band at 1690 cm-1 in cyclohexane with a dilute concentration. The band's source at 1662/1663 cm-1 in acetonitrile (a dilute concentration) can be either the dimers or 2TC-CH3CN clusters. The C=O bond's electronic charge density is the main factor that shifts the vibrational frequency of the C=O stretch mode of 2TC monomer when an aprotic solvent is used. The larger the polarity of an aprotic solvent, the more negative the electronic charge-density of the C=O bond for the monomer, the lower the frequency of the C=O stretch mode.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118043, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31951865

RESUMO

Microsolvation effects on the excited state deactivation dynamics of 2-thiocytosine (2tC) were studied in hydrogen-bonded 2tC clusters with protic solvents using resonance Raman, FT-IR, FT-Raman, UV-vis spectroscopy combining with density functional theoretical calculation. Two protic solvents, water (H2O) and methanol (MeOH), and one aprotic solvent, acetonitrile (MeCN), were used to investigate the 2tC(H2O)1-5, 2tC(MeOH)1-5, and 2tC(MeCN)1-3 microsolvated clusters. In CH3OH and H2O solvents, most of the Raman shifts were due to the vibration modes of 2tC(solvent)n (solvent = H2O, CH3OH; n = 1-4) clusters via intermolecular NH⋯O hydrogen bonds (HB). The intermolecular >NH⋯O hydrogen bond interactions, which are the key constituents of stable thione structure of 2tC, revealed the spectra difference of 2tC in CH3CN, CH3OH and H2O. With the aid of electronic structural and vibration frequency calculations, the observed Raman spectra were assigned to the low energy isomers of 2tC(solvent)2 (solvent = H2O, CH3OH) clusters in water and methanol and 2tC(CH3CN) in acetonitrile solvents. 2tC(solvent)2 clusters in water and methanol may prohibit or promote excited state proton transfer reaction from sulfur atom to neighbor nitrogen atom due to the hydrogen bonding chain between 2tC and protic solvent molecules. Our experimental and theoretical studies confirmed that the hydrogen bond sites were located on the specified functional group SCNH of 2tC with solvent molecules.

8.
RSC Adv ; 10(23): 13442-13450, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35492984

RESUMO

The excited state decay process of N-heterocyclic compounds is attracting increasing attention due to their fundamental applications in pharmaceutical and biological sciences. In this study, 3-amino-5-mercapto-1,2,4-triazole (AMT) was investigated in solid, protic, and aprotic solvents using vibrational and electronic spectroscopies combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The steady absorption and resonance Raman spectra indicated that the AMT structure was quite sensitive to the polarity and proton of the solvent, and the pH environments. The intermolecular hydrogen bonding may contribute significantly to the decay channels of the singlet excited S2(ππ*) state process. Moreover, ns-transient absorption spectroscopy detected the short-time triplet species with ∼200 ns lifetime in solvents. The DFT and TDDFT calculations interpreted the photophysical and photochemical process from the excited S2(ππ*) state, including the singlet and triplet decay mechanisms.

9.
RSC Adv ; 10(51): 30982-30989, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516043

RESUMO

This article aims to correlate the noncoincidence effect phenomenon with the aggregation state of acetylacetone C[double bond, length as m-dash]O stretching in a binary mixture. C[double bond, length as m-dash]O stretching noncoincidence effect (NCE) was observed not only between IR and Raman spectra but also between the isotropic and anisotropic Raman spectra of acetonylacetone. The difference in C[double bond, length as m-dash]O stretching wavenumbers of the isotropic and anisotropic Raman spectra (NCE value) in a binary mixture at different concentrations has been calculated. We found that both isotropic and anisotropic Raman wavenumbers of C[double bond, length as m-dash]O stretching increase with the dilution of acetonylacetone by CCl4 while the NCE value decreases. These noncoincidence and concentration effect phenomena seem to go against the quantum theory. Herein, we proposed an aggregation-induced split (AIS) model to explain the NCE phenomenon and concentration effect. The experimental data were consistent with the DFT calculations performed at the B3LYP-D3/6-311++G (d,p) levels based on the proposed model. The dynamics of transformation from monomers to an aggregated structure can be easily controlled by tuning the concentration. Solvent dependent experiments show that the value of NCE decreased with the increase of the solvent dielectric constant at the same concentration, which is in accordance with Logan's theory.

10.
J Chem Phys ; 151(23): 234303, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864261

RESUMO

The initial nonadiabatic decay dynamics of E,E-2,4-hexadienal (HAL) in the light absorbing S2(ππ*) state were studied using resonance Raman spectroscopy and complete-active space self-consistent field (CASSCF) calculations. The UV and vibrational spectra were assigned on the basis of the UV absorption, Fourier transform (FT)-Raman and FT-infrared measurements, the density-functional theory computations, and the normal mode analysis. The A-band resonance Raman spectra in cyclohexane and acetonitrile were obtained at 282.4, 273.9, 266.0, 252.7, and 245.9 nm excitation wavelengths, respectively, to probe the corresponding structural dynamics of HAL. The A-band absorption cross section and the corresponding absolute resonance Raman cross sections were simulated using a simple model based on the time-dependent wave-packet theory in a Brownian oscillator model. The geometric structures of the singlet electronic excited states and their curve-crossing points were optimized at the CASSCF level of theory. The obtained short-time structural dynamics in easy-to-visualize internal coordinates were then compared with the CASSCF-predicted structural-parameter changes of S2(ππ*)S1(nπ*)-n (n = 1-4). Our results indicate that the initial population of HAL in the S2 state ramifies in or nearby the Franck-Condon (FC) region, leading to five S2(ππ*) → S1(nπ*) internal conversion pathways due to the flexibility of the molecular chain and the different electronic resonant structures formed nearby FC of the S2 state. Then, the formed S1 transient species, which have different geometric structures and different energy partitions, undergo different photophysical processes, such as S1 → S0 internal conversion, S1 → T1 intersystem crossing, and the S1 → S'1 photoisomerization reaction. The substitution effect on the S2(ππ*) → S1(nπ*) internal conversion dynamics and the trans-cis photoisomerization reaction is proposed in terms of the p-π conjugation interaction or the p-σ superconjugation interaction.

11.
ACS Omega ; 4(6): 11074-11081, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460205

RESUMO

The components of isotropic Raman and anisotropic Raman for dimethyl carbonate (DMC) dispersed in cyclohexane and acetone at different volume fractions were recorded separately. The noncoincidence effects (NCE) of the ν7(C=O) stretching mode were calculated accordingly. The NCE values (ΔνNCE) of the ν7(C=O) versus DMC volume fractions in the DMC/C6H12 mixtures exhibits a convex (upward) curvature pattern, while the ΔνNCE vs concentration in the DMC/CH3COCH3 mixtures exhibits a concave (downward) curvature. These different NCE behaviors in the different binary mixtures may arise from the solvent-induced aggregation character. Thus, monomer and dimer structures of DMC were optimized and the vibration spectra were obtained using density functional theory (DFT) calculations. An aggregation model was suggested to expound the DMC's characteristic NCE behavior and concentration effect. We found that the theoretical spectra from DFT/polarizable continuum model calculation based on the aggregation model is in accordance with our experimental data. Solvent-dependent experiments show the ΔνNCE values increase with the decrease of the solvent dielectric constant under the identical volume fractions.

12.
Artigo em Inglês | MEDLINE | ID: mdl-30927570

RESUMO

Intramolecular charge transfer (ICT) is an important photochemical process. In contrast to those in singlet manifold, triplet ICT states were less studied. In this paper, the lowest excited triplet state (T1) of 4­amino­4'­nitrobiphenyl (NH2-Bp-NO2) was recorded with nanosecond transient absorption spectroscopy in acidic acetonitrile and alcoholic solutions. By employing the Kamlet-Taft model to analyze the correlation between absorption maxima and alcohol solvent properties including polarity/polarizability, abilities of hydrogen bond donating and hydrogen bond accepting, hydrogen bond configuration in the ground state (S0) and T1 was resolved. The results suggest that the hydrogen bond between amino H and alcohol is dominant in S0, while in T1, hydrogen bonds between amino H and alcohol, between nitro O and alcohol have comparable contribution. By examination of the 1­naphthol quench effect on T1, the hydrogen bond between nitro O and alcohol was confirmed present. Theoretical calculation results on the model of NH2-Bp-NO2-(MeOH)3 also indicate that hydrogen bonds between amino H and alcohol, between nitro O and alcohol are both much stronger in T1 than in S0. In acidic acetonitrile solution, in S0 of NH2-Bp-NO2 the amino group is protonated with pKa of 4.5, meanwhile in T1 the nitro group is much easier to be protonated than in S0. Its conjugated acid was measured to have a pKa of 3.1.

13.
RSC Adv ; 9(7): 3532-3541, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35518064

RESUMO

Carbon quantum dots were successfully doped into anatase TiO2 single crystal nanosheets (TNS) with exposed {001} and {101} reactive facets by a facile solvothermal process. SEM and TEM confirmed the as-prepared TiO2 nanosheet structure and that the dominant exposed face is the {001} facet, and the loaded N-CDs are nearly spherical with an average size of about 3 nm. XPS results confirmed that the deposited N-CDs were chemically integrated into the TiO2 nanosheets. UV-vis DRS spectroscopy shows that with the dotting of N-CDs, the absorption edge of N-CDs/TNS has been extended into the visible light region. The ability of the N-CDs/TNS to degrade Rhodamine B (RhB) in aqueous solution under visible light irradiation (λ ≥ 400 nm) was investigated. The results show that the photocatalytic performance of N-CDs/TNS was substantially improved relative to pure TNS. The photodegradation efficiency reached its maximum value with 6 mL of N-CDs/TNS, showing a 9.3-fold improvement in photocatalytic activity over TNS. Fluorescence spectroscopy (PL) and electron paramagnetic resonance (EPR) studies were conducted to characterize the active species during the degradation period, based on which the possible photodegradation mechanism of N-CDs/TNS by visible light irradiation was given.

14.
Artigo em Inglês | MEDLINE | ID: mdl-30290292

RESUMO

Hydrogen bonding is a weak chemical interaction widely existed in the variety of organic and biological molecules. As an important structural motif of pyrimidine bases, the solvent effect of the hydrogen bonding of 2-cyclohexen-1-one (CHO) and 3-methyl- 2-cyclohexen-1-one (3MCHO) and its effect on the frequency shift of the CO stretching mode were investigated by using the FT-Raman and UV absorption spectra and density functional theory calculations. The electronic transitions associated with the UV absorptions in different solvents were calculated at B3LYP-TD/6-31++G(d,p) level of theory and employing SCIPCM solvent model. The vibrational spectra of CHO and 3MCHO were assigned on the basis of the FT-Raman spectra in neat liquid and different solvents, the calculated vibrational spectra of monomer and CHO dimers, and the concentration dependent experiments of the band pair intensities. Hydrogen bonding energies of CHO-(H2O)n (n = 1,2) clusters were predicted. The results reveal that the CHO-(H2O)2 cluster and CHO monomer are respectively the major source of spectral observation in water and cyclohexane, while CHO dimmer and CHO monomer coexist in acetonitrile. The difference in the frequency of the νC=O stretching mode between 3MCHO monomer and CHO monomer in cyclohexane were explored.

15.
J Phys Chem A ; 122(43): 8530-8538, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295485

RESUMO

The microsolvation and photophysics of 3-amino-1,2,4-triazole (3AT) after excitation to the light-absorbing S2(nπ*) state were studied by using resonance Raman spectroscopy and single component artificial force-induced reaction (SC-AFIR) in a global reaction route mapping (GRRM) strategy. The vibrational spectra were assigned on the basis of experimental data and density functional theory (DFT) calculations. The resonance Raman spectra of 3AT were measured to probe the excited state structural dynamics in the Franck-Condon region. The conformations of 3AT(CH3CN)1, 3AT(CH3OH)2, and 3AT(H2O)2 clusters were determined by combining vibrational spectrum experiments and B3LYP/6-311++G(d,p) computations. DFT calculations were carried out to obtain the minimal excitation energies of the lower-lying singlet excited states, and the curve-crossing points. It was revealed that the short-time structural dynamics of 3AT were dominated by the N-N stretching coordinates. An excited state decay mechanism is proposed: 3AT is initially excited to the S2(nπ*) state, then the conical intersection (CI) of the S2(nπ*)/S1(ππ*) potential energy surfaces is crossed, and 3AT then decays to the lower solvent-dependent excited state S1(ππ*). It subsequently returns to the S0 state, accompanied by a large Stokes fluorescence shift, which was interpreted as the stabilized S1(ππ*) excited state bonding to several water molecules via intermolecular hydrogen bonding.

16.
J Phys Chem A ; 122(26): 5710-5720, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29889517

RESUMO

The vibrational spectra of 4,6-dimethyl-2-mercaptopyrimidine (DMMP) in acetonitrile, methanol, and water were assigned by resonance Raman spectroscopy through a combination of Fourier-transform infrared spectroscopy (FT-IR), FT-Raman UV-vis spectroscopy, and density functional theoretical (DFT) calculations. The FT-Raman spectra show that the neat solid DMMP is formed as a dimer due to intermolecular hydrogen bonding. In methanol and water, however, the majority of the Raman spectra were assigned to the vibrational modes of DMMP(solvent) n ( n = 1-4) clusters containing NH···O hydrogen bonds. The intermolecular NH···O hydrogen bond interactions, which are key constituents of the stable DMMP thione structure, revealed significant structural differences in acetonitrile, methanol, and water. In addition, UV-induced hydrogen transfer isomeric reactions between the thione and thiol forms of DMMP were detected in water and acetonitrile. DFT calculations indicate that the observed thione → thiol tautomerization should occur easily in lower excited states in acetonitrile and water.

17.
Phys Chem Chem Phys ; 20(17): 11876-11881, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29662995

RESUMO

Solvent assisted excited state intramolecular proton or hydrogen transfer has received much attention in bi-functional molecules with hydrogen donating and hydrogen accepting groups. As a typical photoacid, 1-naphthol exhibits photo-stable behavior in methanol; whether this would be disrupted by a bonded hydrogen accepting group contained in the molecule is still not assured. We present nanosecond transient absorption measurements relating to kinetics and the characteristic absorption of key intermediates upon the excitation of 4-nitro-1-naphthol in alcoholic solutions, and also transient resonance Raman spectroscopy studies combined with theoretical calculations to identify the structures of these intermediates, and we reveal the reaction mechanism to be stepwise deprotonation, hydrogen abstraction and protonation. These results demonstrate that alcohol assisted intramolecular proton or hydrogen transfer cannot occur in this system, but that the solvent cluster plays an important role during such stepwise reactions.

18.
J Phys Chem A ; 122(10): 2732-2738, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29488758

RESUMO

Irradiation of nitro-PAHs in solution at ambient conditions leads to formation of its lowest excited triplet, dissociation intermediates nitrogen oxide (NO•) and aryloxy radical (Ar-O•). Experimental and theoretical studies demonstrated that Franck-Condon excited singlet state SFC(ππ*) to a receiver, higher-energy triplet state Tn(nπ*) controlled the ultrafast population of the triplet state and, hence, the slight fluorescence yield of nitronaphthalenes. However, the detailed information about the curve-crossings of potential energy surfaces and the major channels for forming T1 species and Ar-O• radical were unclear. Here, by using the CASSCF//CASPT2 method, an efficient decay channel is revealed: S2-FC-1NN → S2-MIN-1NN or S2T3-MIN-1NN → T3-MIN-1NN or T3T2-MIN-1NN→ T2-MIN-1NN or T2T1-MIN-1NN → T1-MIN-1NN. This explains the high yield of T1-1NN species and minor yield of Ar-O• and NO• radicals. The calculation results suggest the bifurcation processes take place predominantly after the internal conversion to the T1-1NN state via T2T1-MIN-1NN, one leads to T1-MIN-1NN, while the other to T1-MIN-ISO to produce Ar-O• and NO• radicals.

19.
J Phys Chem A ; 122(7): 1831-1837, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29432008

RESUMO

Nanosecond transient absorption and theoretical calculations have been used to investigate the intermolecular hydrogen abstractions from alcohols and 1-naphthol by the lowest excited triplet (T1) of 1-chloro-4-nitronaphthalene upon excitation of the compound in organic solvents. The hydrogen abstraction of T1 from hydroxy group of 1-naphthol takes place through an electron transfer followed by a proton transfer through hydrogen bonding interaction with rate constants of ∼109 M-1 s-1. Hydrogen-bonding is crucial in this process, indicated by the observation of a half reduction for T1 yield when increasing the concentration of 1-naphthol. The hydrogen abstraction in this way can be decelerated by increasing solvent polarity and hydrogen-bonding donor ability. The T1 of 1-chloro-4-nitronaphthalene can undergo one-step H atom abstraction from alkyl hydrogen in alcoholic solvents, with rate constants of ∼104 M-1 s-1, and produce radical intermediates with the absorption maximum at 368 nm. DFT calculation results indicate both oxygens of the nitro group are active sites for hydrogen abstraction, and the difference of activation barriers for formation of two radical isomers is only 1.0 kcal/mol.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 190: 478-485, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28963972

RESUMO

In the paper, diverse tautomers of 3-amino-1,2,4-triazole (3AT) in solid and polar solvent have been explored by FT-IR, FT-Raman and 488nm Raman experiments combing with quantum chemical theoretical calculation using PCM solvent model and normal mode analysis. The vibrational spectra prefer the 3-amino-1,2,4-2H-triazole (2H-3AT) dimer in solid, while in a polar solvent 3AT is apt to the 3-amino-1,2,4-2H-triazole (2H-3AT) monomer. The significant wavenumber difference and Raman intensity patterns in solid and different solvents are induced by hydrogen bond perturbation along >NH⋯N≤ hydrogen bonds on five-membered N-heterocyclic ring. The ground state proton transfer reaction mechanism along the five-membered N-heterocyclic ring is supported by intermolecular hydrogen bonding between 3AT and protonic solvent molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA