Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.679
Filtrar
1.
Infect Drug Resist ; 17: 2823-2832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005857

RESUMO

Introduction: Recent studies suggested the potential benefits of extended infusion times to optimize the treatment efficacy of ceftazidime/avibactam, which indicated that the current pharmacokinetic/pharmacodynamic (PK/PD) target may not be sufficient, especially for severe infections. The purpose of this study is to assess the adequacy of dosing strategies and infusion durations of ceftazidime/avibactam when applying higher PK/PD targets. Methods: This study utilized published PK parameters to conduct Monte Carlo simulations. Different dosages including the recommended regimen based on renal function were simulated and evaluated by the probability of target attainment (PTA) and cumulative fraction of response (CFR). Different PK/PD targets were set for ceftazidime and avibactam. MIC distributions from various sources were used to calculate the CFR. Results: Multiple PK/PD targets have been set in this study, All recommended dosage could easily achieve the target of 50%fT ≥ MIC (ceftazidime) and 50%fT ≥ CT=1.0 mg/L (avibactam). However, for severe infection patients with normal renal function and augmented renal clearance at the recommended dosage (2000 mg/500 mg, every 8 hours), the infusion duration needs to be extended to 3 hours and 4 hours to achieve the targets of 100%fT ≥ MIC and 100%fT ≥ CT=1.0 mg/L. Only continuous infusion at higher dosages achieved 100%fT ≥ 4×MIC and 100%fT ≥ CT=4.0 mg/L targets to all currently recommended regimens. According to the varying MIC distributions, higher concentrations are needed for Pseudomonas aeruginosa, with the attainment rates vary across different regions. Conclusion: The current recommended dosing regimen of ceftazidime/avibactam is insufficient for severe infection patients, and continuous infusion is suggested.

2.
J Am Chem Soc ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011658

RESUMO

Carbon is commonly used as an electrode material for supercapacitors operating on an electrical double-layer energy storage mechanism. However, the low specific capacitance limits its application. Increasing the specific surface area is by far the most common expansion method, and surprisingly, they are not always positively correlated. The overmuch specific surface will show the characteristics of nanoconfinement, and the potential synergistic enhancement mechanism of various key parameters is still controversial. In this work, carbon fiber electrodes with different ultramicropore structures were designed in order to improve the utilization rate and the discharge capacitance. It has been found that when the ultramicropore entrance's surface is too small, it will lead to the decrease of the external charge of the pore transport channel, and then, the selectivity of the opposite ions will decrease. The numerical simulation based on Poisson and Nernst-Planck equations also indicates that ions have difficulty diffusing into the micropores when their entrance surface decreases. Surface properties within the nanocontainment space become critical factors influencing ion transport and adsorption. The specific discharge capacitance of carbon fiber is increased from 3 to 1430 mF cm-2.

3.
Clin Lab ; 70(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38965946

RESUMO

BACKGROUND: This study aimed to effectively evaluate the diagnostic performance of the EasyNAT Mycobacterium tuberculosis complex (MTC) assay for tuberculosis (TB) detection from sputum. METHODS: The retrospectively analyzed data was collected from September 1, 2021, to November 1, 2023, in our hospital. RESULTS: Forty EasyNAT-positive sputum specimens were simultaneously detected using the GeneXpert MTB/ rifampicin (RIF) assay. The concordance rate between the EasyNAT and GeneXpert MTB/RIF assays was 100%. CONCLUSIONS: Because of the complexity of detecting RIF resistance data information, the rapid EasyNAT system used in conjunction with GeneXpert might be a better choice for the detection of TB in hospitals.


Assuntos
Mycobacterium tuberculosis , Escarro , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Estudos Retrospectivos , Rifampina/farmacologia , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Tuberculose/diagnóstico , Tuberculose/microbiologia , Masculino , Feminino
4.
Cell ; 187(14): 3726-3740.e43, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861993

RESUMO

Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.


Assuntos
Diferenciação Celular , Fatores de Crescimento de Fibroblastos , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Animais , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Ligantes , Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases
5.
bioRxiv ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38854073

RESUMO

Blood flow within the vasculature is a critical determinant of endothelial cell (EC) identity and functionality, yet the intricate interplay of various hemodynamic forces and their collective impact on endothelial and vascular responses are not fully understood. Specifically, the role of hydrostatic pressure in the EC flow response is understudied, despite its known significance in vascular development and disease. To address this gap, we developed in vitro models to investigate how pressure influences EC responses to flow. Our study demonstrates that elevated pressure conditions significantly modify shear-induced flow alignment and increase endothelial cell density. Bulk and single-cell RNA sequencing analyses revealed that, while shear stress remains the primary driver of flow-induced transcriptional changes, pressure modulates shear-induced signaling in a dose-dependent manner. These pressure-responsive transcriptional signatures identified in human ECs were conserved during the onset of circulation in early mouse embryonic vascular development, where pressure was notably associated with transcriptional programs essential to arterial and hemogenic EC fates. Our findings suggest that pressure plays a synergistic role with shear stress on ECs and emphasizes the need for an integrative approach to endothelial cell mechanotransduction, one that encompasses the effects induced by pressure alongside other hemodynamic forces.

6.
Cell Rep ; 43(6): 114310, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38838223

RESUMO

Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19, HIV, and apolipoprotein-L1 (APOL1) nephropathy, but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids, primary endothelial cells, and patient samples, we demonstrate that IFN-γ induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing, immunoblotting, and quantitative fluorescence-based assays reveal that IFN-γ-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-γ signaling inhibits APOL1 expression, prevents upregulation of pyroptosis-associated genes, and rescues vascular networks. Multiomic analyses in patients with COVID-19, proteinuric kidney disease, and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-γ signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis, suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy, which can be targeted therapeutically.


Assuntos
Apolipoproteína L1 , Interferon gama , Nefropatias , Piroptose , Humanos , Apolipoproteína L1/metabolismo , Apolipoproteína L1/genética , COVID-19/metabolismo , COVID-19/patologia , COVID-19/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Interferon gama/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/genética , Piroptose/genética , SARS-CoV-2/metabolismo , Transdução de Sinais
7.
J Cancer Res Clin Oncol ; 150(6): 318, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914714

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is renowned for its formidable and lethal nature, earning it a notorious reputation among malignant tumors. Due to its challenging early diagnosis, high malignancy, and resistance to chemotherapy drugs, the treatment of pancreatic cancer has long been exceedingly difficult in the realm of oncology. γ-Glutamyl cyclotransferase (GGCT), a vital enzyme in glutathione metabolism, has been implicated in the proliferation and progression of several tumor types, while the biological function of GGCT in pancreatic ductal adenocarcinoma remains unknown. METHODS: The expression profile of GGCT was validated through western blotting, immunohistochemistry, and RT-qPCR in both pancreatic cancer tissue samples and cell lines. Functional enrichment analyses including GSVA, ssGSEA, GO, and KEGG were conducted to explore the biological role of GGCT. Additionally, CCK8, Edu, colony formation, migration, and invasion assays were employed to evaluate the impact of GGCT on the proliferation and migration abilities of pancreatic cancer cells. Furthermore, the LASSO machine learning algorithm was utilized to develop a prognostic model associated with GGCT. RESULTS: Our study revealed heightened expression of GGCT in pancreatic cancer tissues and cells, suggesting an association with poorer patient prognosis. Additionally, we explored the immunomodulatory effects of GGCT in both pan-cancer and pancreatic cancer contexts, found that GGCT may be associated with immunosuppressive regulation in various types of tumors. Specifically, in patients with high expression of GGCT in pancreatic cancer, there is a reduction in the infiltration of various immune cells, leading to poorer responsiveness to immunotherapy and worse survival rates. In vivo and in vitro assays indicate that downregulation of GGCT markedly suppresses the proliferation and metastasis of pancreatic cancer cells. Moreover, this inhibitory effect appears to be linked to the regulation of GGCT on c-Myc. A prognostic model was constructed based on genes derived from GGCT, demonstrating robust predictive ability for favorable survival prognosis and response to immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , Progressão da Doença , Imunoterapia , Neoplasias Pancreáticas , gama-Glutamilciclotransferase , Humanos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamento farmacológico , gama-Glutamilciclotransferase/metabolismo , gama-Glutamilciclotransferase/genética , Imunoterapia/métodos , Proliferação de Células , Prognóstico , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Movimento Celular , Multiômica
8.
Food Chem ; 456: 140006, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38870814

RESUMO

Crocus sativus L. is a perennial crop for its valuable active compounds. Plant-associated microbes impact on the quality and efficacy of medicinal herbs by promoting bioactive components accumulation. However, how microbes influence the accumulation of bioactive components in saffron have not been well studied. Here, the microbiome in C. sativus derived from 3 core production areas were deciphered by 16S rDNA sequencing and the relationship between endophytes and bioactive ingredients were further investigated. The main results are as follows: (1) Both Comamonadaceae and Burkholderiaceae were positively correlated with the content of bioactive components in the stigmas. (2) The synthesis of crocin was positively correlated with Xanthomonadaceae, negatively correlated with Lachnospiraceae and Prevotellaceae. Therefore, further investigation is required to determine whether Xanthomonadaceae plays an unknown function in the synthesis of crocin. These findings provide guidelines for disentangling the function of endophytes in the production of bioactive ingredients and thus for microbe-mediated breeding.

9.
World J Clin Oncol ; 15(5): 591-593, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38835841

RESUMO

Colorectal cancer ranks among the most commonly diagnosed cancers globally, and is associated with a high rate of pelvic recurrence after surgery. In efforts to mitigate recurrence, pelvic lymph node dissection (PLND) is commonly advocated as an adjunct to radical surgery. Neoadjuvant chemoradiotherapy (NACRT) is a therapeutic approach employed in managing locally advanced rectal cancer, and has been found to increase the survival rates. Chua et al have proposed a combination of NACRT with selective PLND for addressing lateral pelvic lymph node metastases in rectal cancer patients, with the aim of reducing recurrence and improving survival outcomes. Nevertheless, certain studies have indicated that the addition of PLND to NACRT and total mesorectal excision did not yield a significant reduction in local recurrence rates or improvement in survival. Consequently, meticulous patient selection and perioperative chemotherapy may prove indispensable in ensuring the efficacy of PLND.

10.
ACS Nano ; 18(28): 18477-18484, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38941491

RESUMO

Super-resolution imaging, especially a single-molecule localization approach, has raised a fluorophore engineering revolution chasing sparse single-molecule dark-bright blinking transforms. Yet, it is a challenge to structurally devise fluorophores manipulating the single-molecule blinking kinetics. In this pursuit, we have developed a triggering strategy by innovatively integrating the photoactivatable nitroso-caging strategy into self-blinking sulfonamide to form a nitroso-caged sulfonamide rhodamine (NOSR). Our fluorophore demonstrated controllable self-blinking events upon phototriggered caging unit release. This exceptional blink kinetics improved the super-resolution imaging integrity on microtubules compared to self-blinking analogues. With the aid of paramount single-molecule fluorescence kinetics, we successfully reconstructed the ring structure of nuclear pores and the axial morphology of mitochondrial outer membranes. We foresee that our synthetic approach of photoactivation and self-blinking would facilitate rhodamine devising for super-resolution imaging.


Assuntos
Corantes Fluorescentes , Rodaminas , Cinética , Rodaminas/química , Corantes Fluorescentes/química , Imagem Individual de Molécula/métodos , Humanos , Sulfonamidas/química , Fluorescência , Microscopia de Fluorescência , Imagem Óptica , Processos Fotoquímicos
11.
J Cancer ; 15(12): 3841-3856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911380

RESUMO

Background: Bladder cancer is a prevalent malignancy with significant clinical implications. Small Ubiquitin-like Modifier (SUMO) pathway related genes (SPRG) have been implicated in the development and progression of cancer. Methods: In this study, we conducted a comprehensive analysis of SPRG in bladder cancer. We analyzed gene expression and prognostic value of SPRG and developed a SPRG signature (SPRGS) prognostic model based on four genes (HDAC4, TRIM27, EGR2, and UBE2I) in bladder cancer. Furthermore, we investigated the relationship between SPRGS and genomic alterations, tumor microenvironment, chemotherapy response, and immunotherapy. Additionally, we identified EGR2 as a key SPRG in bladder cancer. The expression of EGR2 in bladder cancer was detected by immunohistochemistry, and the cell function experiment clarified the effect of knocking down EGR2 on the proliferation, invasion, and migration of bladder cancer cells. Results: Our findings suggest that SPRGS hold promise as prognostic markers and predictive biomarkers for chemotherapy response and immunotherapy efficacy in bladder cancer. The SPRGS prognostic model exhibited high predictive accuracy for bladder cancer patient survival. We also observed correlations between SPRG and genomic alterations, tumor microenvironment, and response to chemotherapy. Immunohistochemical results showed that EGR2 was highly expressed in bladder cancer tissues, and its overexpression was associated with poor prognosis. Knockdown of EGR2 inhibited bladder cancer cell proliferation, invasion, and migration. Conclusion: This study provides valuable insights into the landscape of SPRGS in bladder cancer and their potential implications for personalized treatment strategies. The identification of EGR2 as a key SPRG and its functional impact on bladder cancer cells further highlights its significance in bladder cancer development and progression. Overall, SPRGS may serve as important prognostic markers and predictive biomarkers for bladder cancer patients, guiding treatment decisions and improving patient outcomes.

12.
J Infect Dis ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38875153

RESUMO

A hallmark of cerebral malaria is sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation. Antibodies contribute to malaria immunity, but it remains unclear whether functional antibodies targeting parasite-expressed ligand can block cytoadhesion in the brain. Here, we screened the plasma of older children and young adults in Malawi to characterize the antibody response against the P. falciparum-IE surface and used a bioengineered 3D human brain microvessel model incorporating variable flow dynamics to measure adhesion blocking responses. We found a strong correlation between surface antibody reactivity by flow cytometry and reduced P. falciparum-IE binding in 3D microvessels. Moreover, there was a threshold of surface antibody reactivity necessary to achieve robust inhibitory activity. Our findings provide evidence of the acquisition of adhesion blocking antibodies against cerebral binding variants in people exposed to stable P. falciparum transmission and suggest the quality of the inhibitory response can be influenced by flow dynamics.

14.
World J Clin Cases ; 12(16): 2704-2712, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38899301

RESUMO

Immunotherapy and associated immune regulation strategies gained huge attraction in order to be utilized for treatment and prevention of respiratory diseases. Engineering specifically nanomedicines can be used to regulate host immunity in lungs in the case of respiratory diseases including coronavirus disease 2019 (COVID-19) infection. COVID-19 causes pulmonary embolisms, thus new therapeutic options are required to target thrombosis, as conventional treatment options are either not effective due to the complexity of the immune-thrombosis pathophysiology. In this review, we discuss regulation of immune response in respiratory diseases especially COVID-19. We further discuss thrombosis and provide an overview of some antithrombotic nanoparticles, which can be used to develop nanomedicine against thrombo-inflammation induced by COVID-19 and other respiratory infectious diseases. We also elaborate the importance of immunomodulatory nanomedicines that can block pro-inflammatory signalling pathways, and thus can be recommended to treat respiratory infectious diseases.

15.
Front Endocrinol (Lausanne) ; 15: 1390729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863928

RESUMO

Introduction: Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). This study aimed to develop CVD risk prediction models using machine learning to support clinical decision making and improve patient prognosis. Methods: Electronic medical records from patients with CKD at a single center from 2015 to 2020 were used to develop machine learning models for the prediction of CVD. Least absolute shrinkage and selection operator (LASSO) regression was used to select important features predicting the risk of developing CVD. Seven machine learning classification algorithms were used to build models, which were evaluated by receiver operating characteristic curves, accuracy, sensitivity, specificity, and F1-score, and Shapley Additive explanations was used to interpret the model results. CVD was defined as composite cardiovascular events including coronary heart disease (coronary artery disease, myocardial infarction, angina pectoris, and coronary artery revascularization), cerebrovascular disease (hemorrhagic stroke and ischemic stroke), deaths from all causes (cardiovascular deaths, non-cardiovascular deaths, unknown cause of death), congestive heart failure, and peripheral artery disease (aortic aneurysm, aortic or other peripheral arterial revascularization). A cardiovascular event was a composite outcome of multiple cardiovascular events, as determined by reviewing medical records. Results: This study included 8,894 patients with CKD, with a composite CVD event incidence of 25.9%; a total of 2,304 patients reached this outcome. LASSO regression identified eight important features for predicting the risk of CKD developing into CVD: age, history of hypertension, sex, antiplatelet drugs, high-density lipoprotein, sodium ions, 24-h urinary protein, and estimated glomerular filtration rate. The model developed using Extreme Gradient Boosting in the test set had an area under the curve of 0.89, outperforming the other models, indicating that it had the best CVD predictive performance. Conclusion: This study established a CVD risk prediction model for patients with CKD, based on routine clinical diagnostic and treatment data, with good predictive accuracy. This model is expected to provide a scientific basis for the management and treatment of patients with CKD.


Assuntos
Doenças Cardiovasculares , Aprendizado de Máquina , Insuficiência Renal Crônica , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Masculino , Feminino , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/epidemiologia , Pessoa de Meia-Idade , Prognóstico , Idoso , Medição de Risco/métodos , Fatores de Risco , Adulto , Estudos Retrospectivos
16.
Adv Sci (Weinh) ; : e2401789, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874478

RESUMO

Acquired resistance represents a critical clinical challenge to molecular targeted therapies such as tyrosine kinase inhibitors (TKIs) treatment in hepatocellular carcinoma (HCC). Therefore, it is urgent to explore new mechanisms and therapeutics that can overcome or delay resistance. Here, a US Food and Drug Administration (FDA)-approved pleuromutilin antibiotic is identified that overcomes sorafenib resistance in HCC cell lines, cell line-derived xenograft (CDX) and hydrodynamic injection mouse models. It is demonstrated that lefamulin targets interleukin enhancer-binding factor 3 (ILF3) to increase the sorafenib susceptibility of HCC via impairing mitochondrial function. Mechanistically, lefamulin directly binds to the Alanine-99 site of ILF3 protein and interferes with acetyltransferase general control non-depressible 5 (GCN5) and CREB binding protein (CBP) mediated acetylation of Lysine-100 site, which disrupts the ILF3-mediated transcription of mitochondrial ribosomal protein L12 (MRPL12) and subsequent mitochondrial biogenesis. Clinical data further confirm that high ILF3 or MRPL12 expression is associated with poor survival and targeted therapy efficacy in HCC. Conclusively, this findings suggest that ILF3 is a potential therapeutic target for overcoming resistance to TKIs, and lefamulin may be a novel combination therapy strategy for HCC treatment with sorafenib and regorafenib.

17.
Curr Med Sci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900385

RESUMO

OBJECTIVE: Icariin (ICA) has a good neuroprotective effect and can upregulate neuronal basal autophagy in naturally aging rats. Mitochondrial dysfunction is associated with brain aging-related neurodegenerative diseases. Abnormal opening of the mitochondrial permeability transition pore (mPTP) is a crucial factor in mitochondrial dysfunction and is associated with excessive autophagy. This study aimed to explore that ICA protects against neuronal injury by blocking the mPTP opening and down-regulating autophagy levels in a D-galactose (D-gal)-induced cell injury model. METHODS: A cell model of neuronal injury was established in rat pheochromocytoma cells (PC12 cells) treated with 200 mmol/L D-gal for 48 h. In this cell model, PC12 cells were pre-treated with different concentrations of ICA for 24 h. MTT was used to detect cell viability. Senescence associated ß-galactosidase (SA-ß-Gal) staining was used to observe cell senescence. Western blot analysis was performed to detect the expression levels of a senescence-related protein (p21), autophagy markers (LC3B, p62, Atg7, Atg5 and Beclin 1), mitochondrial fission and fusion-related proteins (Drp1, Mfn2 and Opa1), and mitophagy markers (Pink1 and Parkin). The changes of autophagic flow were detected by using mRFP-GFP-LC3 adenovirus. The intracellular ultrastructure was observed by transmission electron microscopy. Immunofluorescence was used to detect mPTP, mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mtROS) and ROS levels. ROS and apoptosis levels were detected by flow cytometry. RESULTS: D-gal treatment significantly decreased the viability of PC12 cells, and markedly increased the SA-ß-Gal positive cells as compared to the control group. With the D-gal stimulation, the expression of p21 was significantly up-regulated. Furthermore, D-gal stimulation resulted in an elevated LC3B II/I ratio and decreased p62 expression. Meanwhile, autophagosomes and autolysosomes were significantly increased, indicating abnormal activation of autophagy levels. In addition, in this D-gal-induced model of cell injury, the mPTP was abnormally open, the ROS generation was continuously increased, the MMP was gradually decreased, and the apoptosis was increased. ICA effectively improved mitochondrial dysfunction to protect against D-gal-induced cell injury and apoptosis. It strongly inhibited excessive autophagy by blocking the opening of the mPTP. Cotreatment with ICA and an mPTP inhibitor (cyclosporin A) did not ameliorate mitochondrial dysfunction. However, the protective effects were attenuated by cotreatment with ICA and an mPTP activator (lonidamine). CONCLUSION: ICA inhibits the activation of excessive autophagy and thus improves mitochondrial dysfunction by blocking the mPTP opening.

18.
BMJ Open ; 14(6): e079954, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38885991

RESUMO

OBJECTIVES: Decreased prognostic nutritional index (PNI) was associated with adverse outcomes in many clinical diseases. This study aimed to evaluate the relationship between baseline PNI value and adverse clinical outcomes in patients with coronary artery disease (CAD). DESIGN: The Personalized Antiplatelet Therapy According to CYP2C19 Genotype in Coronary Artery Disease (PRACTICE) study, a prospective cohort study of 15 250 patients with CAD, was performed from December 2016 to October 2021. The longest follow-up period was 5 years. This study was a secondary analysis of the PRACTICE study. SETTING: The study setting was Xinjiang Medical University Affiliated First Hospital in China. PARTICIPANTS: Using the 50th and 90th percentiles of the PNI in the total cohort as two cut-off limits, we divided all participants into three groups: Q1 (PNI <51.35, n = 7515), Q2 (51.35 ≤ PNI < 59.80, n = 5958) and Q3 (PNI ≥ 59.80, n = 1510). The PNI value was calculated as 10 × serum albumin (g/dL) + 0.005 × total lymphocyte count (per mm3). PRIMARY OUTCOME: The primary outcome measure was mortality, including all-cause mortality (ACM) and cardiac mortality (CM). RESULTS: In 14 983 participants followed for a median of 24 months, a total of 448 ACM, 333 CM, 1162 major adverse cardiovascular events (MACE) and 1276 major adverse cardiovascular and cerebrovascular events (MACCE) were recorded. The incidence of adverse outcomes was significantly different among the three groups (p <0.001). There were 338 (4.5%), 77 (1.3%) and 33 (2.2%) ACM events in the three groups, respectively. A restricted cubic spline displayed a J-shaped relationship between the PNI and worse 5-year outcomes, including ACM, CM, MACE and MACCE. After adjusting for traditional cardiovascular risk factors, we found that only patients with extremely high PNI values in the Q3 subgroup or low PNI values in the Q1 subgroup had a greater risk of ACM (Q3 vs Q2, HR: 1.617, 95% CI 1.012 to 2.585, p=0.045; Q1 vs Q2, HR=1.995, 95% CI 1.532 to 2.598, p <0.001). CONCLUSION: This study revealed a J-shaped relationship between the baseline PNI and ACM in patients with CAD, with a greater risk of ACM at extremely high PNI values. TRIAL REGISTRATION NUMBER: NCT05174143.


Assuntos
Doença da Artéria Coronariana , Avaliação Nutricional , Humanos , Doença da Artéria Coronariana/mortalidade , Feminino , Masculino , China/epidemiologia , Estudos Prospectivos , Pessoa de Meia-Idade , Prognóstico , Idoso , Fatores de Risco , Causas de Morte
19.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2776-2782, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812178

RESUMO

This study explore the molecular mechanism of the synergistic effect of Chinese Yam polysaccharides and nucleoside analogues(NAs) on hepatitis B virus(HBV) resistance. Different concentrations of Chinese Yam polysaccharide and entecavir were ad-ded to HepG2.2.15 cells. After the cytotoxicity was detected by cell counting kit-8(CCK-8), the optimal concentration and time of the two drugs to inhibit HepG2.2.15 cells were screened out. They were divided into control group, Chinese Yam polysaccharide group, entecavir group and combination drug group(Chinese Yam polysaccharide + entecavir). The drugs were added to HepG2.2.15 cells, ELISA was used to detect the effects of each group of drugs on the secretion of hepatitis B virus surface antigen(HBsAg) and hepatitis B virus e antigen(HBeAg) in cell supernatant, probe quantitative real-time PCR(probe qRT-PCR) was used to detect the effects of drugs on HBV-DNA in HepG2.2.15 cells, and Western blot was used to detect the effects of each group of drugs on the expression of p38 MAPK, p-p38 MAPK, NTCP proteins in HepG2.2.15 cells. The qRT-PCR was used to detect the effect of drugs on the expression of p38 MAPK and NTCP mRNA in HepG2.2.15 cells. The results showed that compared with control group, the concentrations of HBeAg and HBsAg in Chinese Yam polysaccharide group, entecavir group and combination group decreased(P<0.01 or P<0.001), and both of them inhibited HBV-DNA in HepG2.2.15 cells(P<0.01), and the HBV-DNA inhibition of HepG2.2.15 cells in the combination group was more obvious(P<0.001), and the protein expression levels of p-p38 MAPK and NTCP were significantly decreased(P<0.05 or P<0.01), the mRNA expression level of p38 MAPK increased, and the mRNA expression level of NTCP decreased(P<0.05 or P<0.01). To sum up, Chinese Yam polysaccharide can reduce the expression of NTCP protein and mRNA through p38 MAPK signaling pathway and cooperate with entecavir in anti-HBV.


Assuntos
Antivirais , Dioscorea , Vírus da Hepatite B , Polissacarídeos , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Polissacarídeos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Células Hep G2 , Antivirais/farmacologia , Dioscorea/química , Sinergismo Farmacológico , Nucleosídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Guanina/análogos & derivados , Guanina/farmacologia
20.
Phytomedicine ; 129: 155698, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728919

RESUMO

BACKGROUND: Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb. PURPOSE: In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG). STUDY DESIGN AND METHODS: First, systematic review search results revealed associations between gestational diabetes mellitus (GDM) and cardiovascular malformations. Subsequently, a second systematic review indicated that heart malformations were consistently associated with oxidative stress and cell apoptosis. We assessed the cytotoxic impacts of Atractylenolide compounds (AT-I, AT-II, and AT-III) on H9c2 cells and chick embryos, determining an optimal concentration of AT-I for further investigation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR), and flow cytometry were utilized to delve into the mechanisms through which AT-I mitigates oxidative stress and apoptosis in cardiac cells. Molecular docking was employed to investigate whether AT-I exerts cardioprotective effects via the STAT3 pathway. Then, we developed a streptozotocin-induced diabetes mellitus (PGDM) mouse model to evaluate AT-I's protective efficacy in mammals. Finally, we explored how AT-I protects hyperglycemia-induced abnormal fetal heart development through microbiota analysis and untargeted metabolomics analysis. RESULTS: The study showed the protective effect of AT-I on embryonic development using a chick embryo model which rescued the increase in the reactive oxygen species (ROS) and decrease in cell survival induced by HG. We also provided evidence suggesting that AT-I might directly interact with STAT3, inhibiting its phosphorylation. Further, in the PGDM mouse model, we observed that AT-I not only partially alleviated PGDM-related blood glucose issues and complications but also mitigated hyperglycemia-induced abnormal fetal heart development in pregnant mice. This effect is hypothesized to be mediated through alterations in gut microbiota composition. We proposed that dysregulation in microbiota metabolism could influence the downstream STAT3 signaling pathway via EGFR, consequently impacting cardiac development and formation. CONCLUSIONS: This study marks the first documented instance of AT-I's effectiveness in reducing the risk of early cardiac developmental anomalies in fetuses affected by gestational diabetes. AT-I achieves this by inhibiting the STAT3 pathway activated by ROS during gestational diabetes, significantly reducing the risk of fetal cardiac abnormalities. Notably, AT-I also indirectly safeguards normal fetal cardiac development by influencing the maternal gut microbiota and suppressing the EGFR/STAT3 pathway.


Assuntos
Apoptose , Diabetes Gestacional , Cardiopatias Congênitas , Hiperglicemia , Lactonas , Estresse Oxidativo , Fator de Transcrição STAT3 , Sesquiterpenos , Animais , Fator de Transcrição STAT3/metabolismo , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Hiperglicemia/tratamento farmacológico , Feminino , Embrião de Galinha , Gravidez , Apoptose/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Diabetes Gestacional/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos , Linhagem Celular , Atractylodes/química , Simulação de Acoplamento Molecular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA