Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JACS Au ; 4(2): 279-300, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425899

RESUMO

Flexible crystals have gained significant attention owing to their remarkable pliability, plasticity, and adaptability, making them highly popular in various research and application fields. The main challenges in developing flexible crystals lie in the rational design, preparation, and performance optimization of such crystals. Therefore, a comprehensive understanding of the fundamental origins of crystal flexibility is crucial for establishing evaluation criteria and design principles. This Perspective offers a retrospective analysis of the development of flexible crystals over the past two decades. It summarizes the elastic standards and possible plastic bending mechanisms tailored to diverse flexible crystals and analyzes the assessment of their theoretical basis and applicability. Meanwhile, the compatibility between crystal elasticity and plasticity has been discussed, unveiling the immense prospects of elastic/plastic crystals for applications in biomedicine, flexible electronic devices, and flexible optics. Furthermore, this Perspective presents state-of-the-art experimental avenues and analysis methods for investigating molecular interactions in molecular crystals, which is vital for the future exploration of the mechanisms of crystal flexibility.

2.
Chem Sci ; 15(10): 3530-3538, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455020

RESUMO

Stimuli-responsive optical materials have provided a powerful impetus for the development of intelligent optoelectronic devices. The family of organic-inorganic hybrid metal halides, distinguished by their structural diversity, presents a prospective platform for the advancement of stimuli-responsive optical materials. Here, we have employed a crown ether to anchor the A-site cation of a chiral antimony halide, enabling convenient control and modulation of its photophysical properties. The chirality-dependent asymmetric lattice distortion of inorganic skeletons assisted by a crown ether promotes the formation of self-trapped excitons (STEs), leading to a high photoluminescence quantum yield of over 85%, concomitant with the effective circularly polarized luminescence. The antimony halide enantiomers showcase highly sensitive stimuli-responsive luminescent behaviours towards excitation wavelength and temperature simultaneously, exhibiting a versatile reversible colour switching capability from blue to white and further to orange. In situ temperature-dependent luminescence spectra, time-resolved luminescence spectra and theoretical calculations reveal that the multi-stimuli-responsive luminescent behaviours stem from distinct STEs within zero-dimensional lattices. By virtue of the inherent flexibility and adaptability, these chiral antimony chlorides have promising prospects for future applications in cutting-edge fields such as multifunctional illumination technologies and intelligent sensing devices.

3.
Angew Chem Int Ed Engl ; 63(19): e202400644, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38470139

RESUMO

Chiral hybrid organic-inorganic metal halides (HOMHs) offer an ideal platform for the advancement of second-order nonlinear optical (NLO) materials owing to their inherent noncentrosymmetric structures. The enhancement of optical nonlinearity of chiral HOMHs could be achieved by matching the free exciton and/or self-trapped exciton energy levels with desired NLO frequencies. However, the current scarcity of resonance modes and low resonance ratio hamper the further improvements of NLO performance. Herein, we propose a new resonant channel of charge transfer (CT) excited states from metal halide polyhedra to organic ligand to boost the second-order optical nonlinearity of chiral HOMHs. The model lead halide (C7H10N)PbBr3 (C7H10N=1-ethylpyridinium) exhibits a drastically enhanced second harmonic generation in resonance to the deep CT exciton energy, with intensity of up to 111.0 times that of KDP and 10.9 times that of urea. The effective NLO coefficient has been determined to be as high as ~40.2 pm V-1, balanced with a large polarization ratio and high laser damage threshold. This work highlights the contribution of organic ligands in the construction of a resonant channel for enhancing second-order NLO coefficients of metal halides, and thus provides guidelines for designing new chiral HOMHs materials for advanced nonlinear photonic applications.

4.
J Am Chem Soc ; 145(49): 26833-26842, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38039190

RESUMO

Halogen substitution has been proven as an effective approach to the band gap engineering and optoelectronic modulation of organic-inorganic hybrid metal halide (OIHMH) materials. Various high-performance mixed halide OIHMH film materials have been primarily obtained through the substitution of coordinated halogens in their inorganic octahedra. Herein, we propose a new strategy of substitution of free halogen outside the inorganic octahedra for constructing mixed halide OIHMH single crystals with chiral structures, resulting in a boost of their linear and nonlinear chiroptical properties. The substitution from DMA4[InCl6]Cl (DMA = dimethylammonium) to DMA4[InCl6]Br crystals through a facile antisolvent vaporization method produces centimeter-scale single crystals with high thermal stability along with high quantum yield photoluminescence, conspicuous circularly polarized luminescence, and greatly enhanced second harmonic generation (SHG). In particular, the obtained DMA4[InCl6]Br single crystal features an intrinsic chiral structure, exhibiting a significant SHG circular dichroism (SHG-CD) response with a highest reported anisotropy factor (gSHG-CD) of 1.56 among chiral OIHMH materials. The enhancements in both linear and nonlinear chiroptical properties are directly attributed to the modulation of octahedral distortion. The mixed halide OIHMH single crystals obtained by free halogen substitution confine the introduced halogens within free halogen sites of the lattice, thereby ensuring the stability of compositions and properties. The successful employment of such a free halogen substitution approach may broaden the horizon of the regulation of structures and the optoelectronic properties of the OIHMH materials.

5.
Inorg Chem ; 62(49): 20520-20527, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38033304

RESUMO

In order to reveal the integrated effect of inorganic lattice structure disturbances and chiral ligands on the structure of tin halide hybrid materials, we show the synthesis, crystal growth, dissolution recrystallization structural transformation (DRST), optical properties, energy band structure, and nonlinear optical properties of a class of chiral tin bromide R/S-2-mpip[SnBr3]Br (2-mpip is 2-methylpiperazinium) and R/S-2-mpipSnBr6 for the first time. The formation of R/S-2-mpipSnBr6 in solution was interestingly caused by irreversible DRST of R/S-2-mpip[SnBr3]Br. The second-harmonic generation response of the new phase R-2-mpipSnBr6 is significantly enhanced compared to that of the initial phase R-2-mpip[SnBr3]Br. These structural transformations of chiral tin bromides reflect, to some extent, the DRST commonality of the tin halide family induced by oxidation and serve as a starting point for investigating the structural chirality and asymmetry of chiral metal hybrid halides.

6.
Mater Horiz ; 10(3): 1005-1011, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36651561

RESUMO

The striking chemical variability of hybrid organic-inorganic metal halides (HOMHs) endows them with fascinating optoelectronic properties. The inorganic skeletons of HOMHs are often flexible and their lattice deformations could serve as an effective factor for enabling the functionalities of HOMHs. Here, the linear and nonlinear optical properties of zero-dimensional (0D) tin(IV) halides have been tuned by structural distortion facilitated by the chiral amines. Enantiopure α-methylbenzyl ammoniums (XMBA, X = Cl, F) effectively transfer their chirality to the inorganic scaffolds when forming the tin(IV) halides, which enables polar arrangements in their crystals and leads to outstanding second-order nonlinear optical performances. In contrast, the racemic mixture of R- and S-FMBA results in the formation of HOMHs with room temperature phosphorescence. The lower lattice deformation in (rac-FMBA)2SnCl6 restrains the non-radiative decay from electron-phonon coupling and facilitates the photoluminescence. Meanwhile, the marked π-π interaction stabilizes the T1 state for phosphorescent emission. These distinct linear and nonlinear optical properties denote the important role that the lattice distortion plays in tuning the optical properties of low-dimensional HOMHs, and offer a promising perspective of 0D tin(IV) halides for applications in optoelectronic materials and devices.

7.
J Am Chem Soc ; 144(36): 16471-16479, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36063390

RESUMO

Chiral hybrid organic-inorganic metal halides (HOMHs) with intrinsic noncentrosymmetry have shown great promise for broad applications in chiroptoelectronics, spintronics, and ferroelectronics. However, the construction strategies for chiral HOMHs often involve chiral building blocks in their frameworks, which greatly limit their chemical diversity. Here, we take advantage of a chiral induction approach and have successfully constructed a series of chiral HOMHs, DMA4MX7 (DMA = dimethylammonium, M = Sb or Bi, X = Cl or Br), based on achiral precursors. The resulting chiral products demonstrate a clear enantioenrichment, as confirmed by single-crystal X-ray diffraction analysis and solid-state circular dichroism (CD) spectroscopy. The induction of chiral HOMHs enables superior nonlinear optical performances with very high thermal stability and laser resistance. The successful employment of such a chiral induction approach might facilitate the construction of libraries of chiral HOMH crystals from diverse achiral precursors, in particular those into which it is not easy to introduce intrinsic chiral centers, and would thus pave a new way for rational preparation and application of chiral HOMH materials.

8.
Dalton Trans ; 51(22): 8593-8599, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621191

RESUMO

Chiral metal halides have shown great potential for application in next generation nonlinear optical (NLO) devices owing to their intrinsic non-centrosymmetry. However, the structures and properties of chiral hybrid indium halides have been rarely reported, especially when it comes to second-harmonic generation (SHG) in NLO. In this work, we have synthesized a pair of new zero-dimensional (0D) chiral hybrid indium halides, (R-MPEA)6InCl9 and (S-MPEA)6InCl9, and studied their NLO properties. The as-prepared chiral hybrid indium halides crystallize in non-centrosymmetric P3221 and P3121 space groups, respectively. NLO studies show that 0D chiral hybrid indium halide crystals exhibit strong SHG responses with high polarization ratio and high laser damage threshold (LDT). This work enriches the family of chiral hybrid metal halide materials and offers a feasible strategy for the targeted design and synthesis of intrinsically non-centrosymmetric metal halide materials for NLO applications.

9.
Dalton Trans ; 51(18): 7248-7254, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35471405

RESUMO

Hybrid organic-inorganic metal halides (HOMHs) have recently attracted broad research interest for their structural tunability and remarkable optoelectronic properties. Among them, chiral HOMHs have demonstrated promising applications in second-order nonlinear optics (NLO) on account of their inherent noncentrosymmetric structures. Herein, we synthesized two new chiral HOMHs, (S-/R-2-C5H14N2)2PbI6, based on S-/R-2-methylpiperazine chiral amines. They feature a band gap close to 2.9 eV with high phase purity as well as environmental and thermal stability. The induction of the chiral optical properties of (S-/R-2-C5H14N2)2PbI6 by chiral organic cations was verified by circular dichroism (CD) spectroscopy. Moreover, the resulted HOMHs materials demonstrate a strong second harmonic generation response with a large laser damage threshold (∼2.97 mJ cm-2), showing promising applications in NLO photonic devices.

10.
Plant Dis ; 106(8): 2145-2154, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35108069

RESUMO

Powdery mildew is one of the most destructive diseases in wheat production. Identifying novel resistance genes and deploying them in new cultivars is the most effective approach to minimize wheat losses caused by powdery mildew. In this study, wheat breeding line PBDH1607 showed high resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the seedling data demonstrated that the resistance was controlled by a single dominant gene, tentatively designated PmPBDH. The ΔSNP index based on bulked segregant RNA sequencing indicated that PmPBDH was associated with an interval of about 30.8 Mb (713.5 to 744.3 Mb) on chromosome arm 4AL. Using newly developed markers, we mapped PmPBDH to a 3.2-cM interval covering 7.1 Mb (719,055,516 to 726,215,121 bp). This interval differed from those of Pm61 (717,963,176 to 719,260,469 bp), MlIW30 (732,769,506 to 732,790,522 bp), and MlNSF10 (729,275,816 to 731,365,462 bp) reported on the same chromosome arm. PmPBDH also differed from Pm61, MlIW30, and MlNSF10 by its response spectrum, origin, or inheritance mode, suggesting that PmPBDH should be a new Pm gene. In the candidate interval, five genes were found to be associated with PmPBDH via time course gene expression analysis, and thus they are candidate genes of PmPBDH. Six closely linked markers, including two kompetitive allele-specific PCR markers, were confirmed to be applicable for tracking PmPBDH in marker-assisted breeding.


Assuntos
Ascomicetos , Triticum , Ascomicetos/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas/genética , Marcadores Genéticos , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
11.
Dalton Trans ; 49(7): 2218-2224, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32003371

RESUMO

Organic-inorganic hybrid compounds that undergo reversible dielectric phase transitions are a very attractive class of smart materials due to their wide applications in data storage, data communication and signal sensing. Here, a piperidine ring, C5H11N, was introduced into the inorganic lead halide perovskite scaffold to obtain three hybrid perovskite compounds, [C5H12N]2PbCl4 (1), [C5H12N]2PbBr4 (2), and [C5H12N]PbI3 (3). When compound 2 and compound 3 feature static two-dimensional (2D) and one-dimensional (1D) perovskite structures, respectively, it is striking that compound 1 shows a reversible pentahedral to octahedral transformation. It undergoes an above-room-temperature dielectric phase transition at Tc≅ 352 K, wherein the high dielectric constant is more than twice the low dielectric constant. Structural analysis shows that 1 undergoes a phase transition from the space group Pnma at the low temperature phase (LTP) to C2/c at the high temperature phase (HTP). The phase transition originates from the order-disorder conversion of piperidinium cations. It is interesting to note that, the Pb2+ cations in the inorganic moieties change from five-coordinate at the LTP to six-coordinate at the HTP. The discovery of dielectric phase transition hybrid organic-inorganic lead halide perovskite materials further enhances the potential applications of high temperature responsive dielectric switchable materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA