Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Hazard Mater ; 472: 134466, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38718507

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia worldwide. Due to its uncertain pathogenesis, there is currently no treatment available for AD. Increasing evidences have linked cellular senescence to AD, although the mechanism triggering cellular senescence in AD requires further exploration. To investigate the involvement of cellular senescence in AD, we explored the effects of cadmium chloride (CdCl2) exposure, one of the potential environmental risk factors for AD, on neuron senescence in vivo and in vitro. ß-amyloid (Aß) and tubulin-associated protein (tau) pathologies were found to be enhanced by CdCl2 exposure in the in vitro models, while p53/p21/Rb cascade-related neuronal senescence pathways were activated. Conversely, the use of melatonin, a cellular senescence inhibitor, or a cadmium ion chelator suppressed CdCl2-induced neuron senescence, along with the Aß and tau pathologies. Mechanistically, CdCl2 exposure activated the suppressor enhancer Lin-12/Notch 1-like (SEL1L)/HMG-CoA reductase degradation 1 (HRD1)-regulated endoplasmic reticulum-associated degradation (ERAD), which enhanced the ubiquitin degradation of sigma-1 receptor (SigmaR1) by specifically recognizing its K142 site, resulting in the activation of the p53/p21/Rb pathway via the induction of Ca2+ dyshomeostasis and mitochondrial dysfunction. In the in vivo models, the administration of the SigmaR1 agonist ANAVEX2-73 rescues neurobehavioral inhibition and alleviates cellular senescence and AD-like pathology in the brain tissue of CdCl2-exposed mice. Consequently, the present study revealed a novel senescence-associated regulatory route for the SEL1L/HRD1/SigmaR1 axis that affects the pathological progression of CdCl2 exposure-associated AD. CdCl2 exposure activated SEL1L/HRD1-mediated ERAD and promoted the ubiquitinated degradation of SigmaR1, activating p53/p21/Rb pathway-regulated neuronal senescence. The results of the present study suggest that SigmaR1 may function as a neuroprotective biomarker of neuronal senescence, and pharmacological activation of SigmaR1 could be a promising intervention strategy for AD therapy.


Assuntos
Cloreto de Cádmio , Senescência Celular , Degradação Associada com o Retículo Endoplasmático , Neurônios , Receptores sigma , Animais , Senescência Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Cloreto de Cádmio/toxicidade , Receptores sigma/metabolismo , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Camundongos , Proteínas tau/metabolismo , Masculino , Doença de Alzheimer/metabolismo , Humanos , Melatonina/farmacologia , Camundongos Endogâmicos C57BL
2.
Theranostics ; 13(12): 4288-4302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554285

RESUMO

Rationale: As a key endogenous negative regulator of ferroptosis, glutathione peroxidase 4 (GPX4) can regulate its antioxidant function through multiple post-translational modification pathways. However, the effects of the phosphorylation/dephosphorylation status of GPX4 on the regulation of inducible ferroptosis in hepatocellular carcinoma (HCC) remain unclear. Methods: To investigate the effects and molecular mechanism of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells. Sorafenib (Sora) was used to establish the ferroptosis model in HCC cells in vitro. Using the site-directed mutagenesis method, we generated the mimic GPX4 phosphorylation or dephosphorylation HCC cell lines at specific serine sites of GPX4. The effects of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells were examined. The interrelationships among GPX4, p53, and protein phosphatase 2A-B55ß subunit (PP2A-B55ß) were also explored. To explore the synergistic anti-tumor effects of PP2A activation on Sora-administered HCC, we established PP2A-B55ß overexpression xenograft tumors in a nude mice model in vivo. Results: In the Sora-induced ferroptosis model of HCC in vitro, decreased levels of cytoplasmic and mitochondrial GPX4, mitochondrial dysfunction, and enhanced p53 retrograde signaling occurred under Sora treatment. Further, we found that mitochondrial p53 retrograded remarkably into the nucleus and aggravated Sora-induced ferroptosis. The phosphorylation status of GPX4 at the serine 2 site (GPX4Ser2) revealed that mitochondrial p-GPX4Ser2 dephosphorylation was positively associated with ferroptosis, and the mechanism might be related to mitochondrial p53 retrograding into the nucleus. In HCC cells overexpressing PP2A-B55ß, it was found that PP2A-B55ß directly interacted with mitochondrial GPX4 and promoted Sora-induced ferroptosis in HCC. Further, PP2A-B55ß reduced the interaction between mitochondrial GPX4 and p53, leading to mitochondrial p53 retrograding into the nucleus. Moreover, it was confirmed that PP2A-B55ß enhanced the ferroptosis-mediated tumor growth inhibition and mitochondrial p53 retrograde signaling in the Sora-treated HCC xenograft tumors. Conclusion: Our data uncovered that the PP2A-B55ß/p-GPX4Ser2/p53 axis was a novel regulatory pathway of Sora-induced ferroptosis. Mitochondrial p-GPX4Ser2 dephosphorylation triggered ferroptosis via inducing mitochondrial p53 retrograding into the nucleus, and PP2A-B55ß was an upstream signal modulator responsible for mitochondrial p-GPX4Ser2 dephosphorylation. Our findings might serve as a potential theranostic strategy to enhance the efficacy of Sora in HCC treatment through the targeted intervention of p-GPX4 dephosphorylation via PP2A-B55ß activation.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteína Fosfatase 2 , Sorafenibe , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Núcleo Celular , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/patologia , Transplante de Neoplasias , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/uso terapêutico , Proteína Fosfatase 2/metabolismo
3.
Environ Res ; 216(Pt 2): 114571, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243047

RESUMO

Few epidemiological studies have focused on prenatal phthalates (PAEs) and polybrominated diphenyl ethers (PBDEs) exposure to neonatal health in China. This study aimed to assess the associations between prenatal PAEs and PBDEs exposure and neonatal health in Guangxi, a Zhuang autonomous region of China. Concentrations of 4 PAEs metabolites (mPAEs) and 5 PBDEs congeners were measured in the serum of 267 healthy pregnant women. Birth outcomes and clinical data of neonates were collected after delivery. Mono-(2-Ethylhexyl) phthalate (MEHP) (81.52%) and BDE47 (35.21%) were the mPAEs and PBDEs congeners with the highest detection rate in serum. Prenatal exposures to mono-n-butyl phthalate (MBP), MEHP, and ΣmPAEs were negatively associated with birth weight (BW), birth length (BL), and gestational age (GA). Higher exposures to MBP, MEHP, and ΣmPAEs were associated with an increased odds ratio (OR) for low birth weight (LBW), but exposure to BDE28 exhibited the opposite effect. Moreover, higher exposures to MBP, MEHP, ΣmPAEs, BDE99, and ΣPBDEswere associated with an increased OR for premature birth (PTB) (P < 0.05). In contrast to MBP exposure, BDE28 exposure was associated with a higher OR for neonatal jaundice (NNJ) (P < 0.05). The interaction analysis showed a positive interaction between monoethyl phthalate (MEP) and BDE28 on the risk of NNJ and positive interaction between ΣmPAEs and BDE47 on the risk of NNJ. In addition, there are ethnicity-specific associations of prenatal PBDEs exposure with neonatal health in individuals of Zhuang and Han nationalities, and boy neonates were more sensitive to prenatal PBDEs exposure than girl neonates. The results revealed that prenatal exposure to mPAEs and PBDEs might have adverse effects on neonatal development, and the effects might be ethnicity- and sex-specific.


Assuntos
Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Coorte de Nascimento , China/epidemiologia , Estudos de Coortes , Éteres Difenil Halogenados/toxicidade , Saúde do Lactente , Exposição Materna/efeitos adversos , Ácidos Ftálicos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA