Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Spine J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608821

RESUMO

BACKGROUND CONTEXT: Intervertebral disc degeneration is common and may play an important role in low back pain, but it is not well-understood. Previous studies have shown that the outer layer of the annulus fibrosus of a healthy disc is innervated by nociceptive nerve fibers. In the process of disc degeneration, it can grow into the inner annulus fibrosus or nucleus pulposus and release neuropeptides. Disc degeneration is associated with inflammation that produces inflammatory factors and potentiates nociceptor sensitization. Subsequently neurogenic inflammation is induced by neuropeptide release from activated primary afferent terminals. Because the innervation of a lumbar disc comes from multi-segmental dorsal root ganglion neurons, does neurogenic inflammation in a degenerative disc initiate neurogenic inflammation in neighboring healthy discs by antidromic activity? PURPOSE: This study was based on animal experiments in Sprague-Dawley rats to investigate the role of neurogenic inflammation in adjacent healthy disc degeneration induced by disc injury. STUDY DESIGN: This was an experimental study. METHODS: Seventy-five 12-week-old, male Sprague-Dawley rats were allocated to 3 groups (sham group, disc injury group and disc injury+TrkA antagonist group). The disc injury group was punctured in the tail disc between the eighth and ninth coccygeal vertebrae (Co8-9) to establish an animal model of tail intervertebral disc degeneration. The sham group underwent only skin puncture and the disc injury+TrkA antagonist group was intraperitoneally injected with GW441756 two days before disc puncture. The outcome measure included quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS: Disc injury induced an increase in aggrecan, NGF, TrkA, CGRP, SP, IL-1ß, and IL-6 mRNA levels in the injured (Co8-9) and adjacent discs (Co7-8), which reached a peak on day 1, then gradually decreased, and returned to normal on day 14. After intraperitoneal injection of GW441756 prior to puncture, the mRNA levels of the above indicators were down-regulated in Co7-8 and Co8-9 intervertebral discs on the 1st and 7th days. The protein content of the above indicators in Co7-8 and Co8-9 intervertebral discs showed roughly the same trend as mRNA levels. CONCLUSIONS: Degeneration of one disc can induce neurogenic inflammation of adjacent healthy discs in a rat model. CLINICAL SIGNIFICANCE: This model supports a key role of neurogenic inflammation in disc degeneration, and may play a role in the experience of low back pain.

2.
Adv Healthc Mater ; : e2400717, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649143

RESUMO

Chronic local inflammation and excessive cell apoptosis in nucleus pulposus (NP) tissue are the main causes of intervertebral disc degeneration (IDD). Stimuli-responsive hydrogels have great potential in the treatment of IDD by facilitating localized and controlled drug delivery. Herein, an injectable drug-loaded dual stimuli-responsive adhesive hydrogel for microenvironmental regulation of IDD, is developed. The gelatin methacryloyl is functionalized with phenylboronic acid groups to enhance drug loading capacity and enable dual stimuli-responsive behavior, while the incorporation of oxidized hyaluronic acid further improves the adhesive properties. The prepared hydrogel exhibits an enhanced drug loading capacity for diol-containing drugs, pH- and reactive oxygen species (ROS)-responsive behaviors, excellent radical scavenging efficiency, potent antibacterial activity, and favorable biocompatibility. Furthermore, the hydrogel shows a beneficial protective efficacy on NP cells within an in vitro oxidative stress microenvironment. The in vivo results demonstrate the hydrogel's excellent therapeutic effect on treating IDD by maintaining water retention, restoring disc height, and promoting NP regeneration, indicating that this hydrogel holds great potential as a promising therapeutic approach for regulating the microenvironment and alleviating the progression of IDD.

3.
Biochem Biophys Res Commun ; 711: 149888, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38603833

RESUMO

OBJECTIVE: To investigate the effect of intermittent parathyroid hormone (iPTH) administration on pathological new bone formation during treatment of ankylosing spondylitis-related osteoporosis. METHODS: Animal models with pathological bone formation caused by hypothetical AS pathogenesis received treatment with iPTH. We determined the effects of iPTH on bone loss and the formation of pathological new bone with micro-computed tomography (micro-CT) and histological examination. In addition, the tamoxifen-inducible conditional knockout mice (CAGGCre-ERTM; PTHflox/flox, PTH-/-) was established to delete PTH and investigate the effect of endogenous PTH on pathological new bone formation. RESULTS: iPTH treatment significantly improved trabecular bone mass in the modified collagen-induced arthritis (m-CIA) model and unbalanced mechanical loading models. Meanwhile, iPTH treatment did not enhance pathological new bone formation in all types of animal models. Endogenous PTH deficiency had no effects on pathological new bone formation in unbalanced mechanical loading models. CONCLUSION: Experimental animal models of AS treated with iPTH show improvement in trabecular bone density, but not entheseal pathological bone formation,indicating it may be a potential treatment for inflammatory bone loss does in AS.


Assuntos
Osteogênese , Hormônio Paratireóideo , Animais , Hormônio Paratireóideo/administração & dosagem , Hormônio Paratireóideo/farmacologia , Hormônio Paratireóideo/uso terapêutico , Osteogênese/efeitos dos fármacos , Camundongos , Osteoporose/tratamento farmacológico , Osteoporose/patologia , Camundongos Knockout , Masculino , Microtomografia por Raio-X , Espondilite Anquilosante/tratamento farmacológico , Espondilite Anquilosante/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Densidade Óssea/efeitos dos fármacos
4.
Biomaterials ; 306: 122509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377847

RESUMO

Chronic local inflammation and resulting cellular dysfunction of nucleus pulposus (NP) cells are important pathogenic factors of intervertebral disc degeneration (IDD). Injectable pathological microenvironment-responsive hydrogels hold significant potential for treating IDD by adapting to dynamic microenvironment of IDD. Herein, we proposed an injectable gelatin-based hydrogel drug delivery system that could respond to the pathological microenvironment of IDD for controlled release of anti-inflammatory drug to promote degenerative NP repair. The hydrogel system was prepared by conjugating phenylboronic acid-modified gelatin methacryloyl (GP) with the naturally extracted anti-inflammatory drug epigallocatechin-3-gallate (EGCG) through dynamic boronic esters. The hydrogel exhibited excellent degradability, injectability, antioxidant properties, anti-inflammatory effects, and biocompatibility. It also displayed responsive-release of EGCG under high reactive oxygen species (ROS) levels and acidic conditions. The hydrogel demonstrated remarkable cytoprotective effects on NP cells in both hyperactive ROS environments and inflammatory cytokine-overexpressed environments in vitro. In vivo studies revealed that the hydrogel injected in situ could effectively ameliorate the intervertebral disc degeneration by maintaining the disc height and NP tissue structure in a rat IDD model. The hydrogel system exhibited excellent biocompatibility and responsive-release of diol-containing drugs in pathological microenvironments, indicating its potential application as a drug delivery platform.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Degeneração do Disco Intervertebral/patologia , Hidrogéis/química , Espécies Reativas de Oxigênio/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Nat Commun ; 15(1): 47, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167807

RESUMO

Intervertebral disc degeneration is a natural process during aging and a leading cause of lower back pain. Here, we generate a comprehensive atlas of nucleus pulposus cells using single-cell RNA-seq analysis of human nucleus pulposus tissues (three males and four females, age 41.14 ± 18.01 years). We identify fibrotic late-stage nucleus pulposus cells characterized by upregulation of serglycin expression which facilitate the local inflammatory response by promoting the infiltration of inflammatory cytokines and macrophages. Finally, we discover that daphnetin, a potential serglycin ligand, substantially mitigates the local inflammatory response by downregulating serglycin expression in an in vivo mouse model, thus alleviating intervertebral disc degeneration. Taken together, we identify late-stage nucleus pulposus cells and confirm the potential mechanism by which serglycin regulates intervertebral disc degeneration. Our findings indicate that serglycin is a latent biomarker of intervertebral disc degeneration and may contribute to development of diagnostic and therapeutic strategies.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Masculino , Feminino , Humanos , Animais , Camundongos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Proteoglicanas , Biomarcadores , Disco Intervertebral/metabolismo
6.
JOR Spine ; 7(1): e1284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38249720

RESUMO

Background: An experimental study was performed to improve the anterior approach model of intervertebral disc degeneration (IVDD). Objective: The aims of this study were to investigate the anterior approach model of IVDD for the cause of death, phenotypes, and underlying mechanisms of low back pain in mice. Method: In this study, we conducted an anterior puncture procedure on a cohort of 300 C57BL/6J mice that were 8 weeks old. Our investigation focused on exploring the causes of death in the study population (n = 300) and assessing the time-course changes in various parameters, including radiographical, histological, immunofluorescence, and immunohistochemistry analyses (n = 10). Additionally, we conducted behavioral assessments on a subset of the animals (n = 30). Results: Transverse vertebral artery rupture is a major factor in surgical death. Radiographical analyses showed that the hydration of the nucleus pulposus began to decrease at 2 weeks after puncture and obviously disappeared over 4 weeks. 3D-CT showed that disc height was significantly decreased at 4 weeks. Osteophyte at the anterior vertebral rims was observed at 2 weeks after the puncture. As the time course increased, histological analyses showed progressive disruption of the destruction of the extracellular matrix and increased secretion of inflammatory cytokines and apoptosis. Behavioral signs of low back pain were increased between the puncture and sham groups at 4 weeks. Conclusion: The improvement of anterior intervertebral disc approach model in mice will be useful to investigate underlying mechanisms and potential therapeutic strategies for behavior and phenotypes. Furthermore, the application of vibrational pre-treatment can be used to increase the sensitivity of axial back pain in the model, thereby providing researchers with a reliable method for measuring this critical phenotype.

7.
J Orthop Res ; 42(1): 172-182, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377113

RESUMO

This study investigated the molecular mechanism by which acetylshikonin inhibits SOX4 expression via the PI3K/Akt pathway to delay intervertebral disc degeneration (IVDD) and low back pain (LBP). Bulk RNA-seq, RT-qPCR, Western blot analysis, immunohistochemical staining, small interfering RNA (siSOX4), lentivirus (lentiv-SOX4hi ), and imaging techniques were used to assess SOX4 expression and validate its upstream regulatory pathway. Acetylshikonin and siSOX4 were injected into the IVD to measure IVDD. SOX4 expression significantly increased in degenerated IVD tissues. TNF-α increased SOX4 expression and apoptosis-related proteins in nucleus pulposus cells (NPCs). siSOX4 reduced TNF-α-induced NPCs apoptosis, while Lentiv-SOX4hi increased it. The PI3K/Akt pathway was significantly correlated with SOX4, and acetylshikonin upregulated PI3K/Akt pathway while inhibiting SOX4 expression. In the anterior puncture IVDD mouse model, SOX4 expression was upregulated, and acetylshikonin and siSOX4 delayed IVDD-induced LBP. Acetylshikonin delays IVDD-induced LBP by inhibiting SOX4 expression through the PI3K/Akt pathway. These findings offer potential therapeutic targets for future treatments.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Núcleo Pulposo , Animais , Camundongos , Apoptose , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Dor Lombar/tratamento farmacológico , Núcleo Pulposo/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa/metabolismo
8.
Mater Today Bio ; 22: 100752, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37576872

RESUMO

Intervertebral disc (IVD) degeneration occurred with the increasing age or accidents has puzzled peoples in daily life. To seal IVD defect by injectable hydrogels is a promising method for slowing down IVD degeneration. Herein, we reported a rapidly in situ forming injectable chitosan/PEG hydrogel (CSMA-PEGDA-L) through integrating photo-crosslink of methacrylate chitosan (CSMA) with Schiff base reaction between CSMA and aldehyde polyethylene glycol (PEGDA). The CSMA-PEGDA-L possessed a stronger compressive strength than the photo-crosslinked CSMA-L hydrogel and Schiff-base-crosslinked CSMA-PEGDA hydrogel. This chitosan/PEG hydrogel showed low cytotoxicity from incubation experiments of nucleus pulpous cells. When implanted on the punctured IVD of rat's tail, the CSMA-PEGDA-L hydrogel could well retard the progression of IVD degeneration through physical plugging, powerfully proven by radiological and histological evaluations. This work demonstrated the strategy of in situ injectable glue may be a potential solution for prevention of IVD degeneration.

9.
J Pers Med ; 13(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37373886

RESUMO

Background: We aimed to propose the apical vertebras distribution modifier to supplement the coronal balance (CB) classification for adult idiopathic scoliosis (AdIS). An algorithm to predict postoperative coronal compensation and avoid postoperative coronal imbalance (CIB) was proposed. Methods: Patients were categorized into CB and CIB groups according to the preoperative coronal balance distance (CBD). The apical vertebras distribution modifier was defined as negative (-) if the centers of the apical vertebras (CoAVs) were on either side of the central sacral vertical line (CSVL) and positive (+) if the CoAVs were on the same side of the CSVL. Results: A total of 80 AdIS patients, with an average age of 25.97 ± 9.20 years, who underwent posterior spinal fusion (PSF) were prospectively recruited. The mean Cobb angle of the main curve was 107.25 ± 21.11 degrees at preoperation. The mean follow-up time was 3.76 ± 1.38 (2-8) years. At postoperation and follow-up, CIB occurred in 7 (70%) and 4 (40%) CB- patients, 23 (50%) and 13 (28.26%) CB+ patients, 6 (60%) and 6 (60%) CIB- patients, and 9 (64.29%) and 10 (71.43%) CIB+ patients. Health-related quality of life (HRQoL) was significantly better in the CIB- group compared with that of the CIB+ group in the dimension of back pain. To avoid postoperative CIB, the correction rate of the main curve (CRMC) should match the compensatory curve for CB-/+ patients; the CRMC should be greater than the compensatory curve for CIB- patients; and the CRMC should be less than the compensatory curve for CIB+ patients, and the inclination of the LIV needs to be reduced. Conclusions: CB+ patients have the least postoperative CIB rate and the best coronal compensatory ability. CIB+ patients are at a high risk of postoperative CIB and have the poorest coronal compensatory capacity in the event of postoperative CIB. The proposed surgical algorithm facilitates the handling of each type of coronal alignment.

10.
J Cancer Res Ther ; 19(1): 14-19, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37006037

RESUMO

Lung cancer is a common type of carcinoma and is the leading cause of cancer-related deaths worldwide. The two broad histological subtypes of lung cancer are non-small-cell lung cancer (NSCLC), which accounts for 85% of cases and includes adenocarcinoma and squamous cell carcinoma, and small-cell lung cancer (SCLC), which accounts for 15% of cases. Substantial improvements in treatment have led to remarkable progress and changed outcomes for many patients in the past two decades. However, with prolonged survival time and awareness of repeat biopsy, more and more patients with lung cancer have been found to undergo a histological transformation during treatment, with lung adenocarcinoma (LAdC) to SCLC transformation being the most frequent. In this article, we summarized findings on the mechanism, clinical characteristics, therapeutic strategies, and predictors of the transformation of LAdC to SCLC. A non-systematic narrative review was performed using the Pubmed/MEDLINE (US National Library of Medicine National Institutes of Health) database with the following keywords: "transformation from NSCLC to SCLC," "transformation from lung adenocarcinoma to small-cell lung cancer," "NSCLC transformation in SCLC," and "NSCLC and transformation and SCLC." Articles published until June 2022 were analyzed. Search results were limited to human studies without restriction for language.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Adenocarcinoma/patologia
11.
Eur Spine J ; 32(6): 2012-2019, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37027034

RESUMO

PURPOSE: In this study, we intended to investigate the association between immediate postoperative hypoalbuminemia and surgical site infection (SSI), and determine a threshold value for postoperative hypoalbuminemia that can assist in risk stratification in patients after posterior lumbar fusion surgery. METHODS: From January 2017 to December 2021, 466 consecutive patients who underwent posterior lumbar fusion surgery were selected to analyze the relationship between immediate postoperative hypoalbuminemia and SSI. Multivariate logistic regression analysis was performed to identify the independent risk factors of SSI and postoperative hypoalbuminemia. Receiver Operating Characteristic (ROC) analysis was used to determine the optimal value for postoperative hypoalbuminemia, and subsequent grouping was based on the identified threshold. RESULTS: Of the total 466 patients, 25 patients (5.4%) developed SSI after surgery, and lower postoperative albumin (OR: 0.716, 95% CI: 0.611-0.840, p < 0.001) was independently associated with SSI. ROC analysis showed that the cutoff value of postoperative hypoalbuminemia was 32 g/L with a sensitivity of 0.760, specificity of 0.844, and a Youden index of 0.604. Postoperative SSI was more common in patients with postoperative hypoalbuminemia than in those without (21.6% vs. 1.6%, p < 0.001). Age, gender and operative duration were found to be independent predictors of postoperative hypoalbuminemia. CONCLUSIONS: This study showed that immediate postoperative hypoalbuminemia was an independent risk factor for the development of SSI in patients who underwent posterior lumbar fusion. Even in patients with a normal preoperative serum albumin level, there was an increased risk of SSI when the postoperative albumin within 24 h was < 32 g/L.


Assuntos
Hipoalbuminemia , Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/etiologia , Hipoalbuminemia/epidemiologia , Fatores de Risco , Albuminas , Estudos Retrospectivos
12.
Ann Rheum Dis ; 82(4): 533-545, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36543525

RESUMO

OBJECTIVE: The aim of this study was to identify the role of Piezo1-mediated mechanotransduction in entheseal pathological new bone formation and to explore the underlying molecular mechanism. METHODS: Spinal ligament tissues were collected from 14 patients with ankylosing spondylitis (AS) and 14 non-AS controls and bulk RNA sequencing was conducted. Collagen antibody-induced arthritis models were established to observe pathological new bone formation. Pharmacological inhibition and genetic ablation of Piezo1 was performed in animal models to identify the essential role of Piezo1. Entheseal osteo-chondral lineage cells were collected and in vitro cell culture system was established to study the role and underlying mechanism of Piezo1 in regulation of chondrogenesis, osteogenesis and its own expression. RESULTS: Piezo1 was aberrantly upregulated in ligaments and entheseal tissues from patients with AS and animal models. Pharmaceutical and genetic inhibition of Piezo1 attenuated while activation of Piezo1 promoted pathological new bone formation. Mechanistically, activation of CaMKII (Calcium/calmodulin dependent protein kinase II) signalling was found essential for Piezo1-mediated mechanotransduction. In addition, Piezo1 was upregulated by AS-associated inflammatory cytokines. CONCLUSION: Piezo1-mediated mechanotransduction promotes entheseal pathological new bone formation through CaMKII signalling in AS.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Ossificação Heterotópica , Espondilite Anquilosante , Animais , Humanos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Osteogênese/genética , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo , Canais Iônicos/metabolismo
13.
Carbohydr Polym ; 291: 119569, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698336

RESUMO

The immunomodulatory effects and signalling pathways of five water-soluble yeast ß-glucan fractions (WYG1-5) with different molecular weights (Mw) and chain conformations were investigated in RAW264.7 macrophages. All five WYG fractions were shown to increase nitric oxide (NO) production, phagocytosis activity and cytokine secretion compared with the normal group. The incubation of cells with WYG for 2 h and then with lipopolysaccharide (LPS) for 24 h showed an inhibition of NO production, phagocytosis activity, cytokine secretion, and the expression of inducible nitric oxide synthase (iNOS) and cytokine mRNA compared with the LPS group. The results showed a two-way immunomodulatory effect of WYG on inflammatory factors, with the best effect for WYG-2 having a Mw of 2830 × 103 g/mol and spherical conformation. Furthermore, both mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) signalling pathways were triggered in the two-way immunomodulation. This study reveals the structure-activity relationship and provides a pharmacological basis for controlling inflammatory disorders with WYG.


Assuntos
Lipopolissacarídeos , beta-Glucanas , Citocinas/metabolismo , Imunomodulação , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Saccharomyces cerevisiae/metabolismo , Água/metabolismo , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia
14.
Exp Mol Med ; 54(4): 518-530, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35440754

RESUMO

Intervertebral disc degeneration (IVDD) is a main cause of low back pain, and inflammatory factors play key roles in its pathogenesis. Gremlin-1 (Grem1) was reported to induce an inflammatory response in other fields. This study aimed to investigate the mechanisms of Grem1 in the degenerative process of intervertebral discs. Dysregulated genes were determined by analyzing microarray profiles. The expression of Grem1 in 17 human disc samples (male:female = 9:8) and rat models (n = 5 each group) was measured by western blotting (WB), real-time quantitative PCR (RT-qPCR), and immunohistochemistry (IHC). The regulatory effects of Grem1 on apoptosis were examined using siRNAs, flow cytometry, immunofluorescence (IF), and WB. The therapeutic effect was evaluated by locally injecting specific Grem1 siRNA into IVDD rats. The expression of Grem1 was significantly increased in human degenerative intervertebral discs; furthermore, the expression of Grem1 positively correlated with the level of intervertebral disc degeneration. Grem1 was significantly overexpressed in tumor necrosis factor (TNF)-α-induced degenerative NP cells. Apoptosis in degenerative NP cells transfected with siRNA targeting Grem1 was significantly lower than that in the control group. Specific Grem1 siRNA markedly repressed the development of IVDD in surgery-induced IVDD rats. These results indicated that the expression of Grem1 was positively correlated with the severity of intervertebral disc degeneration, and Grem1 siRNA could inhibit Grem1-induced apoptosis and extracellular matrix alterations by mediating the TGF-ß/Smad signaling pathway. This study may provide a therapeutic strategy for alleviating inflammation-induced apoptosis associated with intervertebral disc degeneration.


Assuntos
Citocinas/metabolismo , Degeneração do Disco Intervertebral , Núcleo Pulposo , Animais , Apoptose/genética , Feminino , Degeneração do Disco Intervertebral/metabolismo , Masculino , Núcleo Pulposo/metabolismo , Fosforilação , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
15.
JOR Spine ; 5(1): e1196, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35386754

RESUMO

Intervertebral disc (IVD) herniation and degeneration contributes significantly to low back pain (LBP), of which the molecular pathogenesis is not fully understood. Disc herniation may cause LBP and radicular pain, but not all LBP patients have disc herniation. Degenerated discs could be the source of pain, but not all degenerated discs are symptomatic. We previously found that disc degeneration and herniation accompanied by inflammation. We further found that anti-inflammatory molecules blocked immune responses, alleviated IVD degeneration and pain. Based on our recent findings and the work of others, we hypothesize that immune system may play a prominent role in the production of disc herniation or disc degeneration associated pain. While the nucleus pulposus (NP) is an immune-privileged organ, the damage of the physical barrier between NP and systemic circulation, or the innervation and vascularization of the degenerated NP, on one hand exposes NP as a foreign antigen to immune system, and on the other hand presents compression on the nerve root or dorsal root ganglion (DRG), which both elicit immune responses induced by immune cells and their mediators. The inflammation can remain for a long time at remote distance, with various types of cytokines and immune cells involved in this pain-inducing process. In this review, we aim to revisit the autoimmunity of the NP, immune cell infiltration after break of physical barrier, the inflammatory activities in the DRG and the generation of pain. We also summarize the involvement of immune system, including immune cells and cytokines, in degenerated or herniated IVDs and affected DRG.

16.
Sci Adv ; 8(14): eabl8054, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385310

RESUMO

Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by inflammatory back pain and spinal ankylosis due to pathological new bone formation. Here, we identified CXCL12 as a critical contributor to pathological new bone formation through recruitment of osteogenic precursor cells (OPCs). CXCL12 was found highly expressed in the regions that would potentially develop pathological new bone. OPCs were recruited to the regions where CXCL12 was up-regulated. Inhibition of CXCL12/CXCR4 axis with AMD3100 or conditional knockout of CXCR4 attenuated OPCs migration and subsequent pathological new bone formation in animal models of AS. By contrast, a genetically engineered animal model with CXCL12 overexpression developed a joint ankylosis phenotype. Furthermore, Rac1 was found essential for OPCs migration and pathological new bone formation. These findings ravel the novel role of CXCL12 in AS and indicate a potential strategy for targeting the CXCL12/CXCR4-Rac1 axis to prevent progression of axial skeleton ankylosis.

17.
Eur Spine J ; 31(4): 917-925, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35286474

RESUMO

PURPOSE: Low back pain (LBP), a widely prevalent and costly disease around the world, is mainly caused by intervertebral disc (IVD) degeneration (IDD). Although numerous factors may trigger this degenerative process, microbiome dysbiosis has recently been implicated as one of the likely causes. However, the exact relationship between the microbiome and IDD is not well understood. This review summarizes the potential mechanisms and discusses microbiome dysbiosis's possible influence on IDD and LBP. METHODS: Prospective literature review. RESULTS: Alterations in microbiome composition and host responses to the microbiota causing pathological bone development and involution, led to the concept of gut-bone marrow axis and gut-bone axis. Moreover, the concept of the gut-disc axis was also proposed to explain the microbiome's role in IDD and LBP. According to the existing evidence, the microbiome could be an important factor for inducing and aggravating IDD through changing or regulating the outside and inside microenvironment of the IVD. Three potential mechanisms by which the gut microbiota can induce IVD and cause LBP are: (1) translocation of the bacteria across the gut epithelial barrier and into the IVD, (2) regulation of the mucosal and systemic immune system, and (3) regulation of nutrient absorption and metabolites formation at the gut epithelium and its diffusion into the IVD. Furthermore, to investigate whether IVD is initiated by pathogenic bacteria and establish the correlation between the presence of certain microbial groups with the disease in question, microbiome diversity analysis based on16S rRNA data can be used to characterise stool/blood microbiota from IVD patients. CONCLUSION: Future studies on microbiome, fungi and viruses in IDD is necessary to revolutionize our thinking about their possible role in the development of IVD diseases. Furthermore, we believe that inflammation inhibition and interruption of amplification of cascade reaction in IVD by targeting the gut and IVD microbiome is worthwhile for the treatment of IDD and LBP. LEVEL OF EVIDENCE I: Diagnostic: individual cross-sectional studies with the consistently applied reference standard and blinding.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Estudos Transversais , Disbiose/complicações , Disbiose/metabolismo , Disbiose/patologia , Humanos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/patologia , Dor Lombar/patologia , Estudos Prospectivos
18.
Cell Prolif ; 55(4): e13205, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35187741

RESUMO

OBJECTIVES: Intervertebral disc degeneration (IVDD) is a leading cause of low back pain. Circular RNAs (circRNAs) have been demonstrated to exert vital functions in IVDD. However, the role and mechanism of hsa_circ_0083756 in the development of IVDD remain unclear. MATERIALS AND METHODS: RT-qPCR was performed to detect expressions of hsa_circ_0083756, miR-558 and TREM1 in nucleus pulposus (NP) tissues and cells. CCK8 assay, flow cytometry, TUNEL assay, RT-qPCR and WB were used to clarify the roles of hsa_circ_0083756 in NP cells proliferation and extracellular matrix (ECM) formation. Bioinformatics analyses, dual-luciferase reporter gene experiment, RNA immunoprecipitation (RIP) assay and FISH assay were performed to predict and verify the targeting relationship between hsa_circ_0083756 and miR-558, as well as that between miR-558 and TREM1. Ultimately, the effect of hsa_circ_0083756 on IVDD was tested through anterior disc-puncture IVDD animal model in rats. RESULTS: hsa_circ_0083756 was upregulated in degenerative NP tissues and cells. In vitro loss-of-function and gain-of-function studies suggested that hsa_circ_0083756 knockdown promoted, whereas hsa_circ_0083756 overexpression inhibited NP cells proliferation and ECM formation. Mechanistically, hsa_circ_0083756 acted as a sponge of miR-558 and subsequently promoted the expression of TREM1. Furthermore, in vivo study indicated that silencing of hsa_circ_0083756 could alleviate IVDD in rats. CONCLUSIONS: hsa_circ_0083756 promoted IVDD via targeting the miR-558/TREM1 axis, and hsa_circ_0083756 may serve as a potential therapeutic target for the treatment of IVDD.


Assuntos
Degeneração do Disco Intervertebral , MicroRNAs , Núcleo Pulposo , Animais , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Núcleo Pulposo/metabolismo , RNA Circular/genética , Ratos , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
19.
Eur Spine J ; 31(8): 1960-1968, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34657211

RESUMO

BACKGROUND: Lumbar disc degeneration (LDD) may be related to aging, biomechanical and genetic factors. Despite the extensive work on understanding its etiology, there is currently no automated tool for accurate prediction of its progression. PURPOSE: We aim to establish a novel deep learning-based pipeline to predict the progression of LDD-related findings using lumbar MRIs. MATERIALS AND METHODS: We utilized our dataset with MRIs acquired from 1,343 individual participants (taken at the baseline and the 5-year follow-up timepoint), and progression assessments (the Schneiderman score, disc bulging, and Pfirrmann grading) that were labelled by spine specialists with over ten years clinical experience. Our new pipeline was realized by integrating the MRI-SegFlow and the Visual Geometry Group-Medium (VGG-M) for automated disc region detection and LDD progression prediction correspondingly. The LDD progression was quantified by comparing the Schneiderman score, disc bulging and Pfirrmann grading at the baseline and at follow-up. A fivefold cross-validation was conducted to assess the predictive performance of the new pipeline. RESULTS: Our pipeline achieved very good performances on the LDD progression prediction, with high progression prediction accuracy of the Schneiderman score (Accuracy: 90.2 ± 0.9%), disc bulging (Accuracy: 90.4% ± 1.1%), and Pfirrmann grading (Accuracy: 89.9% ± 2.1%). CONCLUSION: This is the first attempt of using deep learning to predict LDD progression on a large dataset with 5-year follow-up. Requiring no human interference, our pipeline can potentially achieve similar predictive performances in new settings with minimal efforts.


Assuntos
Degeneração do Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/genética , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética
20.
Carbohydr Polym ; 273: 118568, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560979

RESUMO

Although ß-glucan could bind to Dectin-1 to exert bioactivity, the influence of molecular size and chain conformation of ß-glucan on its interaction with Dectin-1 is still unclear. This work investigated the molecular sizes and chain conformations of five water-soluble yeast ß-glucan (WYG1-5) fractions as well as their interactions with Dectin-1 by fluorescence spectroscopy and microscale thermophoresis. Results revealed a spherical conformation for higher molecular weight WYG and a stiff chain conformation for smaller molecular weight WYG. The WYG and Dectin-1 interactions were in the order of WYG-2 > WYG-1 > WYG-3 > WYG-4 > WYG-5. The spherical WYG-2 exhibited the largest binding constant of 7.91 × 105 M1 and the lowest dissociation constant of 22.1 nM to Dectin-1. Additionally, the underlying interaction mechanism showed that it may be easier for spherical WYG with longer side chains to interact with receptor Dectin-1.


Assuntos
Polissacarídeos Fúngicos/metabolismo , Lectinas Tipo C/metabolismo , beta-Glucanas/metabolismo , Animais , Configuração de Carboidratos , Polissacarídeos Fúngicos/química , Camundongos , Peso Molecular , Saccharomyces cerevisiae/química , Solubilidade , Água/química , beta-Glucanas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA