Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Eur Acad Dermatol Venereol ; 37(11): 2336-2348, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37326015

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic and recurrent inflammatory skin disease characterized by severe pruritus and eczematous lesions. Heterogeneity of AD has been reported among different racial groups according to clinical, molecular and genetic differences. OBJECTIVE: This study aimed to conduct an in-depth transcriptome analysis of AD in Chinese population. METHODS: We performed single-cell RNA sequencing (scRNA-seq) analysis of skin biopsies from five Chinese adult patients with chronic AD and from four healthy controls, combined with multiplexed immunohistochemical analysis in whole-tissue skin biopsies. We explored the functions of IL19 in vitro. RESULTS: ScRNA-seq analysis was able to profile a total of 87,853 cells, with keratinocytes (KCs) in AD manifesting highly expressed keratinocyte activation and pro-inflammatory genes. KCs demonstrated a novel IL19+ IGFL1+ subpopulation that increased in AD lesions. Inflammatory cytokines IFNG, IL13, IL26 and IL22 were highly expressed in AD lesions. In vitro, IL19 directly downregulated KRT10 and LOR in HaCaT cells and activated HaCaT cells to produce TSLP. CONCLUSION: Abnormal proliferation and differentiation of keratinocytes contribute immensely to the pathogenesis of AD, whereas AD chronic lesions have witnessed significant presence of IL19+ IGFL1+ KCs, which may be involved in the disruption of the skin barrier, the connection and magnification of Th2 and Th17 inflammatory responses, and mediation of skin pruritus. Furthermore, progressive activation of multiple immune axes dominated by Type 2 inflammatory reaction occur in AD chronic lesions.


Assuntos
Dermatite Atópica , Adulto , Humanos , Dermatite Atópica/patologia , Análise da Expressão Gênica de Célula Única , Queratinócitos/patologia , Pele/patologia , Citocinas , Diferenciação Celular , Prurido/patologia
2.
J Proteomics ; 270: 104746, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36210013

RESUMO

The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP), which regulates thymus development, peripheral survival and function during lifetime of CD8+ T cells. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic ß cells destruction mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is an important animal model of T1D. Here, we deeply analyzed the MIP derived from NOD mice thymus and pancreas, and demonstrated that the thymus MIP source proteins partially shared with the MIP source proteins derived from NOD mice pancreas and ß cell line. One H-2Kd restricted peptide SLC35B126-34 which was shared by MIP derived from both NOD mice pancreatic tissues and islet ß-cell line, but absent in MIP from NOD thymus tissues, showed ability to stimulate IFN-γ secretion and proliferation of NOD mice splenic CD8+ T cells. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. Data are available via ProteomeXchange with identifier PXD031966. SIGNIFICANCE: The peptides repertoire presented to CD8+ T cells by major histocompatibility complex (MHC) class I molecules is referred to as the MHC I-associated peptidome (MIP). The MIP presented by thymic antigen presenting cells (APCs) is crucial for shaping CD8+ T cell repertoire and self-tolerance, while the MIP presented by peripheral tissues and organs is not only involved in maintaining periphery CD8+ T cell survival and homeostasis, but also mediates immune surveillance and autoimmune responses of CD8+ T cells under pathological conditions. Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by the destruction of pancreatic ß cells, mediated primarily by autoreactive CD8+ T cells. Non-obese diabetic (NOD) mouse is one of important animal models of spontaneous autoimmune diabetes that shares several key features with human T1D. The global view of the MHC I-associated self-peptides repertoire in the thymus and pancreas of NOD mice may serve as a good biological reference to identify potential autoantigens targeted by autoreactive CD8+ T cells in T1D. It has great significance for further clarifying the immune recognition and effect mechanism of autoreactive CD8+ T cells in the pathogenesis of T1D, and then developing antigen-specific immune intervention strategies.


Assuntos
Diabetes Mellitus Tipo 1 , Camundongos , Animais , Humanos , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/metabolismo , Linfócitos T CD8-Positivos , Proteômica , Antígenos de Histocompatibilidade Classe I , Pâncreas/patologia , Autoantígenos , Antígenos HLA/metabolismo , Peptídeos/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 1037822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545340

RESUMO

Introduction: Epidemiological studies have suggested that dietary factors, especially high consumption of high glycaemic index carbohydrates and sugars, may trigger or exacerbate the progression of type 1 diabetes. We aimed to provide experimental evidence to confirm this relevance and to explore the underlying mechanisms. Methods: NOD mice were given sustained high-glucose drinking or glucose-free water and observed for the incidence of type 1 diabetes and islet inflammation. RNAseq was performed to detect the transcriptome changes of the NOD islet beta cell line NIT-1 after high glucose treatment, and mass spectrometry was performed to detect the proteome changes of NIT-1-cells-derived sEVs. Results: Sustained high glucose drinking significantly aggravates islet inflammation and accelerates the onset of type 1 diabetes in NOD mice. Mechanistically, high glucose treatment induces aberrant ER stress and up-regulates the expression of autoantigens in islet beta cell. Moreover, high glucose treatment alters the proteome of beta-cells-derived sEVs, and significantly enhances the ability of sEVs to promote DC maturation and stimulate immune inflammatory response. Discussion: This study provides evidence for negative effect of high glucose intake as a dietary factor on the pathogenesis of type 1 diabetes in genetically predisposed individuals. Therefore, avoiding high sugar intake may be an effective disease prevention strategy for children or adults susceptible to type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Camundongos Endogâmicos NOD , Proteoma/metabolismo , Ilhotas Pancreáticas/metabolismo , Inflamação/metabolismo
4.
Front Med (Lausanne) ; 9: 843230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783608

RESUMO

Several studies have tried to establish mice models of atopic dermatitis (AD) through the allergen of Dermatophagoides farinae (Df). However, there are no typical skin lesions after epicutaneous application of an extract of Df (DfE) on BALB/c mice. Dinitrofluorobenzene (DNFB) is a common hapten that brings about contact dermatitis. Skin dysfunction induced by DNFB may be a way to enhance the effects of DfE on mice skin. Thus, we hypothesized that alternate epicutaneous application of DNFB and DfE could induce AD-like skin lesions on BALB/c mice. To test this hypothesis, we alternately applied the DNFB and DfE to the back skin of BALB/c mice for 8 weeks. Changes in mice skin lesions and the frequency of scratching behavior were recorded. The variation of Th1-related cytokines (interferon-γ [IFN-γ] and interleukin two [IL-2]) and Th2-related cytokines (IL-4 and IL-13) was detected in serum and lesional skin. Eventually, the BALB/c mice developed severe erythema, erosion, scarring, and excoriation on the entire back, showing a high frequency of scratching behavior. In addition, Th2 cells' dominant cytokines appeared in both serum and lesional skin. Those results indicate that alternating epicutaneous exposure to DNFB and DfE can produce AD-like models with typical clinical features and Th2-type immune responses in BALB/c mice. This model could be valuable for studying the pathogenesis of AD and developing novel therapeutic agents for it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA