Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 75(5): 1530-1546, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976211

RESUMO

Arabidopsis PHYTOALEXIN DEFICIENT 4 (PAD4) has an essential role in pathogen resistance as a heterodimer with ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1). Here we investigated an additional PAD4 role in which it associates with and promotes the maturation of the immune-related cysteine protease RESPONSIVE TO DEHYDRATION 19 (RD19). We found that RD19 and its paralog RD19c promoted EDS1- and PAD4-mediated effector-triggered immunity to an avirulent Pseudomonas syringae strain, DC3000, expressing the effector AvrRps4 and basal immunity against the fungal pathogen Golovinomyces cichoracearum. Overexpression of RD19, but not RD19 protease-inactive catalytic mutants, in Arabidopsis transgenic lines caused EDS1- and PAD4-dependent autoimmunity and enhanced pathogen resistance. In these lines, RD19 maturation to a pro-form required its catalytic residues, suggesting that RD19 undergoes auto-processing. In transient assays, PAD4 interacted preferentially with the RD19 pro-protease and promoted its nuclear accumulation in leaf cells. Our results lead us to propose a model for PAD4-stimulated defense potentiation. PAD4 promotes maturation and nuclear accumulation of processed RD19, and RD19 then stimulates EDS1-PAD4 dimer activity to confer pathogen resistance. This study highlights potentially important additional PAD4 functions that eventually converge on canonical EDS1-PAD4 dimer signaling in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cisteína Proteases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Cisteína Proteases/genética , Fitoalexinas , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética
2.
Plant Cell ; 35(6): 2006-2026, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36808553

RESUMO

Arbuscular mycorrhizal (AM) symbiosis is a widespread, ancient mutualistic association between plants and fungi, and facilitates nutrient uptake into plants. Cell surface receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) play pivotal roles in transmembrane signaling, while few RLCKs are known to function in AM symbiosis. Here, we show that 27 out of 40 AM-induced kinases (AMKs) are transcriptionally upregulated by key AM transcription factors in Lotus japonicus. Nine AMKs are only conserved in AM-host lineages, among which the SPARK-RLK-encoding gene KINASE3 (KIN3) and the RLCK paralogues AMK8 and AMK24 are required for AM symbiosis. KIN3 expression is directly regulated by the AP2 transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), which regulates the reciprocal exchange of nutrients in AM symbiosis, via the AW-box motif in the KIN3 promoter. Loss of function mutations in KIN3, AMK8, or AMK24 result in reduced mycorrhizal colonization in L. japonicus. AMK8 and AMK24 physically interact with KIN3. KIN3 and AMK24 are active kinases and AMK24 directly phosphorylates KIN3 in vitro. Moreover, CRISPR-Cas9-mediated mutagenesis of OsRLCK171, the sole homolog of AMK8 and AMK24 in rice (Oryza sativa), leads to diminished mycorrhization with stunted arbuscules. Overall, our results reveal a crucial role of the CBX1-driven RLK/RLCK complex in the evolutionarily conserved signaling pathway enabling arbuscule formation.


Assuntos
Lotus , Micorrizas , Oryza , Humanos , Lotus/genética , Simbiose/genética , Transporte Biológico , Pesquisadores , Proteínas de Plantas/genética , Raízes de Plantas , Regulação da Expressão Gênica de Plantas/genética
3.
Sci Adv ; 8(36): eabq5108, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083908

RESUMO

Nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen effectors to trigger plant immunity. The direct recognition mechanism of pathogen effectors by coiled-coil NLRs (CNLs) remains unclear. We demonstrate that the Triticum monococcum CNL Sr35 directly recognizes the pathogen effector AvrSr35 from Puccinia graminis f. sp. tritici and report a cryo-electron microscopy structure of Sr35 resistosome and a crystal structure of AvrSr35. We show that AvrSr35 forms homodimers that are disassociated into monomers upon direct recognition by the leucine-rich repeat domain of Sr35, which induces Sr35 resistosome assembly and the subsequent immune response. The first 20 amino-terminal residues of Sr35 are indispensable for immune signaling but not for plasma membrane association. Our findings reveal the direct recognition and activation mechanism of a plant CNL and provide insights into biochemical function of Sr35 resistosome.

4.
Plant Cell Environ ; 44(9): 3103-3121, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33993496

RESUMO

Rice blast disease caused by the filamentous Ascomycetous fungus Magnaporthe oryzae is a major threat to rice production worldwide. The mechanisms underlying rice resistance to M. oryzae, such as transcriptional reprogramming and signalling networks, remain elusive. In this study, we carried out an in-depth comparative transcriptome study on the susceptible and resistant rice cultivars in response to M. oryzae. Our analysis highlighted that rapid, high-amplitude transcriptional reprogramming was important for rice defence against blast fungus. Ribosome- and protein translation-related genes were significantly enriched among differentially expressed genes (DEGs) at 12 hpi in both cultivars, indicating that the protein translation machinery is regulated in the activation of immunity in rice. Furthermore, we identified a core set of genes that are involved in the rice response to both biotic and abiotic stress. More importantly, among the core genes, we demonstrated that the metallothionein OsMT1a and OsMT1b genes positively regulated rice resistance while a peroxidase gene Perox4 negatively regulated rice resistance to M. oryzae. Our study provides novel insight into transcriptional reprogramming and serves as a valuable resource for functional studies on rice immune signalling components in resistance to blast disease.


Assuntos
Ascomicetos , Oryza/imunologia , Doenças das Plantas/imunologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia
5.
New Phytol ; 230(3): 1078-1094, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33469907

RESUMO

Calcium (Ca2+ ) is a second messenger for plant cell surface and intracellular receptors mediating pattern-triggered and effector-triggered immunity (respectively, PTI and ETI). Several CYCLIC NUCLEOTIDE-GATED CHANNELS (CNGCs) were shown to control transient cytosolic Ca2+ influx upon PTI activation. The contributions of specific CNGC members to PTI and ETI remain unclear. ENHANCED DISEASE SUSCEPTIBLITY1 (EDS1) regulates ETI signaling. In an Arabidopsis genetic screen for suppressors of eds1, we identify a recessive gain-of-function mutation in CNGC20, denoted cngc20-4, which partially restores disease resistance in eds1. cngc20-4 enhances PTI responses and ETI hypersensitive cell death. A cngc20-4 single mutant exhibits autoimmunity, which is dependent on genetically parallel EDS1 and salicylic acid (SA) pathways. CNGC20 self-associates, forms heteromeric complexes with CNGC19, and is phosphorylated and stabilized by BOTRYTIS INDUCED KINASE1 (BIK1). The cngc20-4 L371F exchange on a predicted transmembrane channel inward surface does not disrupt these interactions but leads to increased cytosolic Ca2+ accumulation, consistent with mis-regulation of CNGC20 Ca2+ -permeable channel activity. Our data show that ectopic Ca2+ influx caused by a mutant form of CNGC20 in cngc20-4 affects both PTI and ETI responses. We conclude that tight control of the CNGC20 Ca2+ ion channel is important for regulated immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Regulação da Expressão Gênica de Plantas , Nucleotídeos Cíclicos , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA