Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11788, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783016

RESUMO

Fascaplysin is a red cytotoxic pigment with anticancer properties isolated from the marine sponge Fascaplysinopsis sp. Recently, structure-activity relationship analysis reported by our group suggested that selective cytotoxicity of fascaplysin derivatives towards tumor cells negatively correlates with their ability to intercalate into DNA. To validate this hypothesis, we synthesized 6- and 7-tert-butylfascaplysins which reveal mitigated DNA-intercalating properties. These derivatives were found to be strongly cytotoxic to drug-resistant human prostate cancer cells, albeit did not demonstrate improved selectivity towards cancer cells when compared to fascaplysin. At the same time, kinome analysis suggested an activation of CHK1/ATR axis in cancer cells shortly after the drug exposure. Further experiments revealed induction of replication stress that is eventually converted to the toxic DNA double-strand breaks, resulting in caspase-independent apoptosis-like cell death. Our observations highlight new DNA-targeting effect of some fascaplysin derivatives and indicate more complex structure-activity relationships within the fascaplysin family, suggesting that cytotoxicity and selectivity of these alkaloids are influenced by multiple factors. Furthermore, combination with clinically-approved inhibitors of ATR/CHK1 as well as testing in tumors particularly sensitive to the DNA damage should be considered in further studies.


Assuntos
Antineoplásicos , Quinase 1 do Ponto de Checagem , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Indóis/farmacologia , Indóis/química , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Masculino , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , DNA/metabolismo , Animais , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Compostos de Amônio Quaternário , Carbolinas , Indolizinas
2.
Mar Drugs ; 22(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393024

RESUMO

Based on the results of our own preliminary studies, the derivative of the marine alkaloid fascaplysin containing a phenyl substituent at C-9 was selected to evaluate the therapeutic potential in vivo and in vitro. It was shown that this compound has outstandingly high antimicrobial activity against Gram-positive bacteria, including antibiotic-resistant strains in vitro. The presence of a substituent at C-9 of the framework is of fundamental importance, since its replacement to neighboring positions leads to a sharp decrease in the selectivity of the antibacterial action, which indicates the presence of a specific therapeutic target in bacterial cells. On a model of the acute bacterial sepsis in mice, it was shown that the lead compound was more effective than the reference antibiotic vancomycin seven out of nine times. However, ED50 value for 9-phenylfascaplysin (7) was similar for the unsubstituted fascaplysin (1) in vivo, despite the former being significantly more active than the latter in vitro. Similarly, assessments of the anticancer activity of compound 7 against various variants of Ehrlich carcinoma in mice demonstrated its substantial efficacy. To conduct a structure-activity relationship (SAR) analysis and searches of new candidate compounds, we synthesized a series of analogs of 9-phenylfascaplysin with varying aryl substituents. However, these modifications led to the reduced aqueous solubility of fascaplysin derivatives or caused a loss of their antibacterial activity. As a result, further research is required to explore new avenues for enhancing its pharmacokinetic characteristics, the modification of the heterocyclic framework, and optimizing of treatment regimens to harness the remarkable antimicrobial potential of fascaplysin for practical usage.


Assuntos
Antibacterianos , Anti-Infecciosos , Carbolinas , Indolizinas , Compostos de Amônio Quaternário , Animais , Camundongos , Antibacterianos/farmacologia , Relação Estrutura-Atividade , Indóis , Testes de Sensibilidade Microbiana
3.
Mar Drugs ; 21(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623705

RESUMO

Fascaplysin is a marine alkaloid which is considered to be a lead drug candidate due to its diverse and potent biological activity. As an anticancer agent, fascaplysin holds a great potential due to the multiple targets affected by this alkaloid in cancer cells, including inhibition of cyclin-dependent kinase 4 (CDK4) and induction of intrinsic apoptosis. At the same time, the studies on structural optimization are hampered by its rather high toxicity, mainly caused by DNA intercalation. In addition, the number of methods for the syntheses of its derivatives is limited. In the current study, we report a new two-step method of synthesis of fascaplysin derivatives based on low temperature UV quaternization for the synthesis of thermolabile 9-benzyloxyfascaplysin and 6-tert-butylfascaplysin. 9-Benzyloxyfascaplysin was used as the starting compound to obtain 9-hydroxyfascaplysin. However, the latter was found to be chemically highly unstable. 6-tert-Butylfascaplysin revealed a significant decrease in DNA intercalation when compared to fascaplysin, while cytotoxicity was only slightly reduced. Therefore, the impact of DNA intercalation for the cytotoxic effects of fascaplysin and its derivatives needs to be questioned.


Assuntos
Alcaloides , Antineoplásicos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Carbolinas , DNA
4.
Mar Drugs ; 21(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36827157

RESUMO

The term "Far East" implies a huge geographical region that consists of Eastern and Southeastern Asia, Eastern Russia and includes the waters of two oceans-the Pacific and Indian [...].


Assuntos
Organismos Aquáticos , Produtos Biológicos , Oceanos e Mares , Federação Russa
5.
Mar Drugs ; 20(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36547888

RESUMO

The carrageenans isolated from red algae demonstrated a variety of activities from antiviral and immunomodulatory to antitumor. The diverse structure and sulfation profile of carrageenans provide a great landscape for drug development. In this study, we isolated, purified and structurally characterized κo- and λo- oligosaccharides from the marine algae Chondrus armatus. We further examined the tumor suppressive activity of both carrageenans in gastrointestinal cancer models. Thus, using MTT assay, we could demonstrate a pronounced antiproliferative effect of the carrageenans in KYSE-30 and FLO-1 as well as HCT-116 and RKO cell lines with IC50 184~405 µg/mL, while both compounds were less active in non-cancer epithelial cells RPE-1. This effect was stipulated by the inhibition of cell cycle progression in the cancer cells. Specifically, flow cytometry revealed an S phase delay in FLO-1 and HCT-116 cells under κo-carrageenan treatment, while KYSE-30 demonstrated a pronounced G2/M cell cycle delay. In line with this, western blotting revealed a reduction of cell cycle markers CDK2 and E2F2. Interestingly, κo-carrageenan inhibited cell cycle progression of RKO cells in G1 phase. Finally, isolated κo- and λo- carrageenans induced apoptosis on adenocarcinomas, specifically with high apoptosis induction in RKO cells. Overall, our data underline the potential of κo- and λo- carrageenans for colon and esophageal carcinoma drug development.


Assuntos
Chondrus , Neoplasias Gastrointestinais , Rodófitas , Humanos , Carragenina/química , Chondrus/química , Rodófitas/química , Plantas/metabolismo
6.
Mar Drugs ; 20(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323484

RESUMO

Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b']diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure-activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.


Assuntos
Antineoplásicos , Indóis , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , DNA/metabolismo , Humanos , Indóis/química , Indóis/farmacologia , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Relação Estrutura-Atividade
7.
Mar Drugs ; 18(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271756

RESUMO

Efficacy and mechanism of action of marine alkaloid 3,10-dibromofascaplysin (DBF) were investigated in human prostate cancer (PCa) cells harboring different levels of drug resistance. Anticancer activity was observed across all cell lines examined without signs of cross-resistance to androgen receptor targeting agents (ARTA) or taxane based chemotherapy. Kinome analysis followed by functional investigation identified JNK1/2 to be one of the molecular targets of DBF in 22Rv1 cells. In contrast, no activation of p38 and ERK1/2 MAPKs was observed. Inhibition of the drug-induced JNK1/2 activation or of the basal p38 activity resulted in increased cytotoxicity of DBF, whereas an active ERK1/2 was identified to be important for anticancer activity of the alkaloid. Synergistic effects of DBF were observed in combination with PARP-inhibitor olaparib most likely due to the induction of ROS production by the marine alkaloid. In addition, DBF intensified effects of platinum-based drugs cisplatin and carboplatin, and taxane derivatives docetaxel and cabazitaxel. Finally, DBF inhibited AR-signaling and resensitized AR-V7-positive 22Rv1 prostate cancer cells to enzalutamide, presumably due to AR-V7 down-regulation. These findings propose DBF to be a promising novel drug candidate for the treatment of human PCa regardless of resistance to standard therapy.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Oxindóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células PC-3 , Fosforilação , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais
8.
Mar Drugs ; 17(9)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450717

RESUMO

A simple approach toward the synthesis of the marine sponge derived pigment fascaplysin was used to obtain the marine alkaloids 3-bromofascaplysin and 3,10-dibromofascaplysin. These compounds were used for first syntheses of the alkaloids 14-bromoreticulatate and 14-bromoreticulatine. Preliminary bioassays showed that 14-bromoreticulatine has a selective antibiotic (to Pseudomonas aeruginosa) activity and reveals cytotoxicity toward human melanoma, colon, and prostate cancer cells. 3,10-Dibromofascaplysin was able to target metabolic activity of the prostate cancer cells, without disrupting cell membrane's integrity and had a wide therapeutic window amongst the fascaplysin alkaloids.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Indóis/farmacologia , Poríferos/química , Alcaloides/síntese química , Animais , Antibacterianos/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Técnicas de Química Sintética/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Indóis/síntese química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos
9.
Nat Prod Commun ; 11(2): 207-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27032203

RESUMO

The new 6,6-spiroketal,sargassopenilline H (1), and known peneciraistin C (2) have been isolated from an EtOAc extract of the marine-derived fungus Penicillium lividumKMM 4663. The structure of the new metabolite was determined by HR ESIMS and 1D and 2D NMR spectroscopy. Sargassopenilline H (1) in non-cytotoxic concentration inhibited colony formation of RPMI-7951 and MDA-MB-231 cell lines.


Assuntos
Benzopiranos/química , Benzopiranos/farmacologia , Penicillium/química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Estrutura Molecular
10.
Bioorg Med Chem ; 18(11): 3834-40, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20457529

RESUMO

3- and 10-Bromofascaplysins was previously found to possess cytotoxic activity. In this study, we investigated their cancer preventive and proapoptotic properties. These effects were tested on mouse skin epidermal JB6 P(+) Cl41 cell line, its stable transfectants, and human tumor HL-60, THP-1, SNU-C4, SK-MEL-28, DLD-1, MDA-MB-231, and HeLa cells using a variety of assessments, including a cell viability (MTS) assay, flow cytometry, anchorage-independent soft agar assay, luciferase assay, mitochondrial permeability assay, and Western blotting. 3- and 10-Bromofascaplysins were effective at submicromolar concentrations as the anticancer agents, which exerted their action, at least in part, through the induction of caspase-8, -9, -3-dependent apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Mitocôndrias/metabolismo , Permeabilidade/efeitos dos fármacos , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA