Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nanomaterials (Basel) ; 13(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37947676

RESUMO

The fast rise of organic pollution has posed severe health risks to human beings and toxic issues to ecosystems. Proper disposal toward these organic contaminants is significant to maintain a green and sustainable development. Among various techniques for environmental remediation, advanced oxidation processes (AOPs) can non-selectively oxidize and mineralize organic contaminants into CO2, H2O, and inorganic salts using free radicals that are generated from the activation of oxidants, such as persulfate, H2O2, O2, peracetic acid, periodate, percarbonate, etc., while the activation of oxidants using catalysts via Fenton-type reactions is crucial for the production of reactive oxygen species (ROS), i.e., •OH, •SO4-, •O2-, •O3CCH3, •O2CCH3, •IO3, •CO3-, and 1O2. Nanoscale zero-valent iron (nZVI), with a core of Fe0 that performs a sustained activation effect in AOPs by gradually releasing ferrous ions, has been demonstrated as a cost-effective, high reactivity, easy recovery, easy recycling, and environmentally friendly heterogeneous catalyst of AOPs. The combination of nZVI and AOPs, providing an appropriate way for the complete degradation of organic pollutants via indiscriminate oxidation of ROS, is emerging as an important technique for environmental remediation and has received considerable attention in the last decade. The following review comprises a short survey of the most recent reports in the applications of nZVI participating AOPs, their mechanisms, and future prospects. It contains six sections, an introduction into the theme, applications of persulfate, hydrogen peroxide, oxygen, and other oxidants-based AOPs catalyzed with nZVI, and conclusions about the reported research with perspectives for future developments. Elucidation of the applications and mechanisms of nZVI-based AOPs with various oxidants may not only pave the way to more affordable AOP protocols, but may also promote exploration and fabrication of more effective and sustainable nZVI materials applicable in practical applications.

2.
Molecules ; 28(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836691

RESUMO

Coordination polymers (CPs) are a diverse class of multi-dimensional compounds that show promise as photocatalysts for degrading dyes in polluted water. Herein, a new 1D Cd(II)-based coordination polymer with the formula [Cd(bpyp)(nba)2] (1) (bpyp = 2,5-bis(pyrid-4-yl)pyridine and Hnba = 4-nitrobenzoic acid) is synthesized and characterized. In 1, the two carboxyl groups of two different nba- ligands show µ2-η1:η1 and µ1-η1:η1 coordination modes to connect the CdII centers and sit on either side of the chain along the b direction. The produced CP 1 was utilized as the photocatalyst in the process of the photodegradation of methyl blue (MB), methyl orange (MO), rhodamine B (RhB), and methyl violet (MV) dyes when exposed to UV light. The photocatalytic degradation activities of CP 1 were analyzed, and the results suggest that it exhibits an extraordinary efficiency in the degradation of MB, MV, MO, and RhB. RhB has a 95.52% efficiency of degradation, whereas MV has a 58.92% efficiency, MO has 35.44%, and MB has 29.24%. The photodecomposition of dyes is catalyzed mostly by •O2- and •OH-, as shown by research involving the trapping of radicals.

3.
J Org Chem ; 88(14): 10206-10211, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37436148

RESUMO

The photoredox-catalyzed 1,6-difluoromethylation of 3-methyl-4-nitro-5-styrylisoxazole with HCF2SO2Na has been developed. Structurally diverse difluoromethylated products were obtained in good yields, and their further transformations were also investigated. The di-, tri-, and monofluoromethylation of the substrates were compared, and the yield of the difluoromethylation was the highest. DFT calculations revealed that in the difluoromethylation reaction the CF2H radical was nucleophilic, and the transition state activation energy was the lowest.

4.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298982

RESUMO

Conjugated polymer photocatalysts for hydrogen production have the advantages of an adjustable structure, strong response in the visible light region, adjustable energy levels, and easy functionalization. Using an atom- and step-economic direct C-H arylation method, dibromocyanostilbene was polymerized with thiophene, dithiophene, terthiophene, and fused thienothiophene and dithienothiophene, respectively, to produce donor-acceptor (D-A)-type linear conjugated polymers containing different thiophene derivatives with different conjugation lengths. Among them, the D-A polymer photocatalyst constructed from dithienothiophene could significantly broaden the spectral response, with a hydrogen evolution rate up to 12.15 mmol h-1 g-1. The results showed that the increase in the number of fused rings on thiophene building blocks was beneficial to the photocatalytic hydrogen production of cyanostyrylphene-based linear polymers. For the unfused dithiophene and terthiophene, the increase in the number of thiophene rings enabled more rotation freedom between the thiophene rings and reduced the intrinsic charge mobility, resulting in lower hydrogen production performance accordingly. This study provides a suitable process for the design of electron donors for D-A polymer photocatalysts.


Assuntos
Hidrogênio , Doadores de Tecidos , Humanos , Polímeros , Tiofenos
5.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050045

RESUMO

A series of aggregation-induced emission (AIE)-featured phenylmethylene pyridineacetonitrile derivatives named o-DBCNPy ((Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-2-yl)acrylonitrile), m-DBCNPy ((Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-3-yl)acrylonitrile), and p-DBCNPy ((Z)-3-(4-(di-p-tolylamino)phenyl)-2-(pyridin-4-yl)acrylonitrile) have been synthesized by tuning the substitution position of the pyridine ring. The linkage manner of the pyridine ring had influences on the molecular configuration and conjugation, thus leading to different photophysical properties. The absorption and fluorescence emission peak showed a bathochromic shift when the linking position of the pyridine ring changed from the meta to the ortho and para position. Meanwhile, o-DBCNPy exhibited the highest fluorescence quantum yield of 0.81 and the longest fluorescence lifetime of 7.96 ns as a neat film among all three isomers. Moreover, non-doped organic light-emitting diodes (OLEDs) were assembled in which the molecules acted as the light-emitting layer. Due to the relatively prominent emission properties, the electroluminescence (EL) performance of the o-DBCNPy-based OLED was superior to those of the devices based on the other two isomers with an external quantum efficiency (EQE) of 4.31%. The results indicate that delicate molecular modulation of AIE molecules could endow them with improved photophysical properties, making them potential candidates for organic photoelectronic devices.

6.
Chem Commun (Camb) ; 58(46): 6653-6656, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35593224

RESUMO

A Cu-catalyzed asymmetric 1,6-conjugate addition of in situ generated para-quinone methides (p-QMs) with ß-ketoester has been developed to construct a ketoester skeleton bearing an adjacent tertiary-quaternary carbon stereocenter in good yields and high enantioselectivities. This is the first example of metal-catalyzed asymmetric transformations of the in situ generated p-QMs, avoiding using pre-synthesized p-QMs requiring bulky 2,6-substitutions and highlighting a new dual catalytic activation with the chiral bis(oxazoline)-metal complex acting as a normal Lewis acid to activate the ß-ketoesters and a source of Brønsted acid responsible for generating the p-QMs in situ.


Assuntos
Cobre , Indolquinonas , Catálise , Metais
7.
J Mol Model ; 28(1): 15, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961885

RESUMO

Three types noncovalent interactions (type I, II and III) between pyrazine (C4H4N2) and XF (X = F, Cl, Br, and I) have been discovered at the MP2/aug-cc-pVTZ level. TypeI is σ-hole interaction between the positive site on the halogen X of XF and the negative site on one of the pyrazine nitrogens. Type II is counterintuitive σ-hole interaction driven by polarization between the positive site on the halogen X of XF and a portion of the pyrazine ring. Type III is an interaction between the lateral regions of the halogen X of XF and the position of the pyrazine ring. Through comparing the calculated interaction energy, we can know that the type II and type III interactions are weaker than the corresponding type I interactions, and type III interactions are weaker than the corresponding type II interactions in C4H4N2-XF complexes. SAPT analysis shows that the electrostatic energy are the major source of the attraction for the type I (σ-hole) interactions while the type III interactions are mainly dispersion energy. For the type II (counterintuitive σ-hole) interactions in C4H4N2-XF (X = F and Cl) complexes, electrostatic energy are the major source of the attraction, while in C4H4N2-XF (X = Br and I) complexes, the electrostatic term, induction and dispersion play equally important role in the total attractive interaction. NBO analysis, AIM theory, and conceptual DFT are also being utilized.

8.
Org Lett ; 22(20): 8086-8090, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33026813

RESUMO

The selective catalytic C-N bond cleavage of amides into value-added amine products is a desirable but challenging transformation. Molecules containing iminodibenzyl motifs are prevalent in pharmaceutical molecules and functional materials. Here we established a combined KOH/BEt3 catalyst for deaminative hydroboration of acyl-iminodibenzyl derivatives, including nonheterocyclic carboxamides, to the corresponding amines. This novel transition-metal-free methodology was also applied to the construction of Clomipramine and luminophores.

9.
Phytochemistry ; 170: 112212, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31785552

RESUMO

Phenylpropanoids comprise a broad spectrum of biologically active natural products. As part of our ongoing research on antiepileptic active compounds from traditional Chinese herb, Acorus calamus var. angustatus Besser, three undescribed phenylpropanoids and twenty-two known ones were isolated. All the undescribed structures were determined by a combination of 1D and 2D NMR, HRMS. In addition, γ-asaronol was identified as racemates and its absolute configuration were determined by the modified Mosher's method and ECD spectral data. Furthermore, some selected isolated compounds were evaluated for their cell viability and neuroprotective activities in H2O2-induced SH-SY5Y cells. α-Asaronol, ß-asaronol, 3-(2,4,5-trimethoxyphenyl)propan-1-ol and 1,2,4-trimethoxy-5-(3-methoxypropyl)benzene exerted potential protective activity from neuronal oxidative stress in all test concentrations ranging from 0.01 to 100 µM, in which the neuroprotective activity of ß-asaronol was the best.


Assuntos
Acorus/química , Anisóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenilpropionatos/farmacologia , Compostos Fitoquímicos/farmacologia , Rizoma/química , Derivados de Alilbenzenos , Anisóis/química , Anisóis/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Fenilpropionatos/química , Fenilpropionatos/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
J Org Chem ; 84(22): 14627-14635, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31663738

RESUMO

The first transition-metal-free catalytic protocol for controlled reduction of amide functions using cheap and bench-stable hydrosilanes as reducing agents has been established. By altering the hydrosilane and solvent, the new method enables the selective cleavage of unactivated C-O bonds in amides and allows the C-N bonds to selectively break via the deacylated cleavage. Overall, this novel process may offer a versatile alternative to current methodologies employing stoichiometric metal systems for the controlled reduction of carboxamides.

11.
J Phys Chem A ; 123(31): 6751-6760, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31305075

RESUMO

The oxidation state, also called oxidation number, of atoms in molecules is a fundamental chemical concept. It is defined as the charge of an atom in a molecule after the ionic approximation of its heteronuclear bonds is applied. Even though for simple molecules the assignment of oxidation states is straightforward, redundancy and ambiguity do exist for others. In this work, we present a density-based framework to determine the oxidation state using the quantities from the information-theoretic approach. As a proof of concept, we examined six elements for a total of 49 molecules. Strong linear correlations were obtained with Shannon entropy, Ghosh-Berkowitz-Parr entropy, information gain, relative Rényi entropy of orders 2 and 3, and Hirshfeld charge. We also discovered that the crystal radius of elements plays the key role in rationalizing the system dependent nature of these strong linear correlations. The validity and effectiveness of our results were demonstrated by the examples of molecules containing elements with two or more oxidation states. Our results should be applicable to more complicated systems in assigning different oxidation states.

12.
Molecules ; 24(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067638

RESUMO

Diketopyrrolopyrrole (DPP) is an important type of π-conjugated building block for high-performance organic electronic materials. DPP-based conjugated materials are usually synthesized via Suzuki, Stille, or Negishi cross-coupling reactions, which require organometallic precursors. In this paper, a series of novel phenyl-cored DPP molecules, including five meta-phenyl-cored molecules and four para-phenyl-cored molecules, have been synthesized in moderate to good yields, in a facile manner, through the Pd-catalyzed direct arylation of C-H bonds, and their optoelectrical properties have been investigated in detail. All new molecules have been fully characterized by NMR, MALDI-TOF MS, elemental analysis, UV-visible spectroscopy, and cyclic voltammetry. This synthetic strategy has evident advantages of atom- and step-economy and low cost, compared with traditional cross-coupling reactions.


Assuntos
Estrutura Molecular , Polímeros/síntese química , Pirróis/síntese química , Catálise , Eletrônica , Polímeros/química , Pirróis/química
13.
J Mol Model ; 25(1): 28, 2019 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30612194

RESUMO

The pnicogen and halogen bonding interactions in the PH2X---BrCl(X = H, F, OH, OCH3 and CH3) complexes have been studied at the MP2/aug-cc-pVTZ level. Analysis of interaction energies shows that the pnicogen-bonded structures are less stable than the corresponding halogen-bonded structures. The pnicogen and halogen bonds were also studied by conceptual DFT reactivity indices. Noncovalent interaction (NCI) and SAPT analysis reveals that the dispersion interactions dominate the pnicogen-bonded complexes of PH2X---BrCl in nature, while the halogen-bonded complexes are dominantly electrostatic energy. Graphical abstract It is found that the local softness s+ or s-on the basic center P of PH2X is related to the interaction energies (ΔECP) of halogen- or pnicogen-bonded complexes.

14.
Free Radic Biol Med ; 130: 458-470, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448512

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain. It cannot be cured currently, and those suffering from AD place a great burden on their caregivers and society. AD is characterized by high levels of iron ions in the brain, which catalyze radicals that damage the neurons. Knowing that the Aß42 peptide precipitates iron by binding iron ions at amino acid residues D1, E3, H11, H13, and H14, we synthesized a 5-repeat (HAYED) sequence peptide. By treating iron-stressed SH-SY5Y cells with it and injecting it into the cerebrospinal fluid (CSF) of naturally senescence Kunming mouse, which displaying AD-similar symptoms such as learning and memory dysfunction, neuron degeneration and high level of iron in brain, we found that HAYED (5) decreased the iron and radical levels in the cell culture medium and in the CSF. Specially, the synthesized peptide prevented cell and brain damage. Furthermore, functional magnetic resonance imaging (fMRI), Morris water maze and passive avoidance tests demonstrated that the peptide ameliorated brain blood-oxygen metabolism and slowed cognitive loss in the experimental senescence mice, and clinical and blood tests showed that HAYED (5) was innoxious to the kidney, the liver and blood and offset the AD-associated inflammation and anemia.


Assuntos
Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Envelhecimento/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ferro/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/química , Fragmentos de Peptídeos/síntese química
15.
ACS Omega ; 3(12): 17986-17990, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458389

RESUMO

For a given size of one fullerene molecule, there could exist many different isomers and their energy landscape is remarkably complex. To have a better understanding of the nature and origin of their isomeric stability, as a continuation of our previous endeavors, we systematically dissect the molecular stability of four fullerene systems, C44, C48, C52, and C60, with a total of 2547 structures, using density functional theory and the information-theoretic approach. The total energy decomposition analysis is beneficial to understand the origin and nature of isomeric stability. Our results showcase that the electrostatic potential is the dominant factor contributing to the isomeric stability of these fullerenes, and other contributions such as steric and quantum effects play minor but indispensable roles. This study also finds that the origin of the isomeric stability of these species is due to the spatial delocalization of the electron density. Our work should provide novel insights into the isomeric stability of fullerene molecules, which have found tremendous applications in solar-energy studies and nanomaterial sciences.

16.
J Comput Chem ; 39(2): 117-129, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29076175

RESUMO

Molecular acidity is one of the important physiochemical properties of a molecular system, yet its accurate calculation and prediction are still an unresolved problem in the literature. In this work, we propose to make use of the quantities from the information-theoretic (IT) approach in density functional reactivity theory and provide an accurate description of molecular acidity from a completely new perspective. To illustrate our point, five different categories of acidic series, singly and doubly substituted benzoic acids, singly substituted benzenesulfinic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, have been thoroughly examined. We show that using IT quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, one is able to simultaneously predict experimental pKa values of these different categories of compounds. Because of the universality of the quantities employed in this work, which are all density dependent, our approach should be general and be applicable to other systems as well. © 2017 Wiley Periodicals, Inc.

17.
J Chem Phys ; 134(8): 084103, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21361523

RESUMO

The anomeric effect (the tendency of heteroatomic substituents adjacent to a heteroatom within the cyclohexane ring to prefer the axial orientation instead of the sterically less hindered equatorial position) is traditionally explained through either the dipole moment repulsion or the hyperconjugation effect. In this work, by employing our recent work in density functional steric analysis, we provide a novel two-component explanation, which is consistent with the common belief in chemistry that the effect has a stereoelectronic origin. With α-D-glucopyranose as the prototype, we systematically explore its conformational space and generate 32 isomers, leading to a total of 80 axial-equatorial conformation pairs. The energy difference analysis of these pairs shows that while statistically speaking the tendency is valid, the anomeric effect is not always true and can be violated. Three energy components, exchange-correlation, classical electrostatic, and density functional steric, are found to be directly proportional to the total energy difference between axial and equatorial isomers. We also found that the total dipole moment change, not the hyperconjugation effect, is a reasonable indicator of the total energy difference. However, all these correlations alone are not strong enough to provide a compellingly convincing explanation for the general validity of the effect. With the help of strong correlations between energy components, an explanation with two energy components, steric and electrostatic, was proposed in this work. We show that the axial-equatorial energy difference in general, with the anomeric effect as a special case, is dictated by two factors of the stereoelectronic origin, steric hindrance and classical electrostatic interactions, synchronously working together. Another explanation in terms of exchange-correlation and electrostatic interactions has also been obtained in this work.


Assuntos
Glucose/química , Teoria Quântica , Isomerismo , Conformação Molecular , Termodinâmica
18.
Chem Pharm Bull (Tokyo) ; 58(6): 843-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20522997

RESUMO

Three new oligostilbenes, trans-suffruticosol D (1), cis-suffruticosol D (2), and cis-gnetin H (7), were isolated along with the eight known stilbenes, trans-resveratrol (3), trans-epsilon-viniferin (4), cis-epsilon-viniferin (5), gnetin H (6), suffruticosol A (8), suffruticosol B (9), suffruticosol C (10), and cis-ampelopsin E (11) from the seeds of Paeonia suffruticosa. Compounds 3-6 were isolated for the first time from this plant species, and compound 11 was isolated for the first time from the genus Paeonia. The structures of the new compounds were elucidated based on spectral analyses, including 1D and 2D NMR experiments. The absolute configuration of compound 1 was determined by quantum chemical calculation of the electronic circular dichroism and comparison with the experimental circular dichroism spectrum.


Assuntos
Paeonia/química , Sementes/química , Estilbenos/química , Isomerismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estilbenos/isolamento & purificação
20.
J Hazard Mater ; 177(1-3): 228-36, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20022692

RESUMO

In the present study, Cinnamomum camphora leaves powder (CLP) was investigated as a biosorbent for the removal of copper ions from aqueous solutions. The biosorbents before and after adsorption were measured by EDS and FT-IR. Kinetic data and sorption equilibrium isotherms were carried out in batch process. The adsorption kinetic experiments revealed that there are three stages in the whole adsorption process. It was found that Cu(II) adsorption onto CLP for different initial Cu(II) concentrations all followed pseudo-second order kinetics and were mainly controlled by the film diffusion mechanism. Batch equilibrium results at different temperatures suggest that Cu(II) adsorption onto CLP can be described perfectly with Langmuir isotherm model compared to Freundlich and D-R isotherm models, and the characteristic parameters for each adsorption isotherm were also determined. Thermodynamic parameters calculated show that the adsorption process has been found to be endothermic in nature. The analysis for the values of the mean free energies of adsorption (E(a)), the Gibbs free energy (DeltaG(0)) and the effect of ionic strength all demonstrate that the whole adsorption process is mainly dominated by ion-exchange mechanism, accompanied by a certain amount of surface complexation which has been verified by variations in EDS and FT-IR spectra and pH value before and after adsorption. Regeneration studies show CLP possesses an excellent reusability.


Assuntos
Cinnamomum camphora , Cobre/isolamento & purificação , Folhas de Planta/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Termodinâmica , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA