Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cancer Gene Ther ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858534

RESUMO

RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.

2.
ACS Appl Mater Interfaces ; 16(19): 24908-24919, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38706177

RESUMO

Perovskite nanocrystal (PeNC) arrays are showing a promising future in the next generation of micro-light-emitting-diode (micro-LED) displays due to the narrow emission linewidth and adjustable peak wavelength. Electrohydrodynamic (EHD) inkjet printing, with merits of high resolution, uniformity, versatility, and cost-effectiveness, is among the competent candidates for constructing PeNC arrays. However, the fabrication of red light-emitting CsPbBrxI(3-x) nanocrystal arrays for micro-LED displays still faces challenges, such as low brightness and poor stability. This work proposes a design for a red PeNC colloidal ink that is specialized for the EHD inkjet printing of three-dimensional PeNC arrays with enhanced luminescence and stability as well as being adaptable to both rigid and flexible substrates. Made of a mixture of PeNCs, polymer polystyrene (PS), and a nonpolar xylene solvent, the PeNC colloidal ink enables precise control of array sizes and shapes, which facilitates on-demand micropillar construction. Additionally, the inclusion of PS significantly increases the brightness and environmental stability. By adopting this ink, the EHD printer successfully fabricated full-color 3D PeNC arrays with a spatial resolution over 2500 ppi. It shows the potential of the EHD inkjet printing strategy for high-resolution and robust PeNC color conversion layers for micro-LED displays.

3.
Nano Lett ; 24(12): 3661-3669, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408021

RESUMO

The lack of stability of red perovskite nanocrystals (PeNCs) remains the main problem that restricts their patterning application. In this work, the dual-ligand passivation strategy was introduced to stabilize PeNCs and inhibit their halogen ion migration during high-voltage electrohydrodynamic (EHD) inkjet printing. The as-printed red arrays exhibit the highest emisson intensity and least blue shift compared with samples with other passivation strategies under a high electric field during EHD inkjet printing. Combining with blue and green PeNC inks, single-color and tricolor color conversion layer arrays were successfully printed, with minimum pixel size of 5 µm and the highest spatial resolution of 2540 dpi. The color coordinate of CsPbBrI2 NCs arrays are located close to the red point, with a color gumat of 97.28% of Rec. 2020 standard. All of these show great potential in the application of color conversion layers in a near-eye micro-LED display.

4.
Clin Transl Med ; 13(10): e1445, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37837401

RESUMO

BACKGROUND: To date, standardizing clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY: Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSIONS: This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immune-modulatory ncRNA biomarkers as predictive tools and therapeutic targets.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Receptores de Antígenos Quiméricos , Humanos , RNA Longo não Codificante/genética , MicroRNAs/genética , Biomarcadores , Autofagia/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral , Glipicanas
5.
Nanoscale ; 15(43): 17232-17248, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37856207

RESUMO

Micro-LED displays have been recognized as the next-generation display technology. This review focuses on the pixel-driving technology of micro-LED displays. The performance of pixel driving on micro-LED displays is discussed in terms of brightness uniformity, driving speed, grayscale, and frame rate under various driving architectures. Since the memristors possess characteristics similar to those of biological synaptic neurons due to the ion migration mechanism, the neural network approach which combines the memristor arrays with the pixel driving circuit of micro-LEDs could promote the development of smart and efficient displays.

6.
Nanotechnology ; 34(33)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37192605

RESUMO

The temperature-dependent external quantum efficiency (EQE) droops of 265 nm, 275 nm, 280 nm, and 285 nm AlGaN-based ultraviolet-c light-emitting diodes (UVC-LEDs) differed in Al contents have been comprehensively investigated. The modifiedABCmodel (R = An+Bn2+Cn3) with the current-leakage related term,f(n)= Dn4, has been employed to analyze the recombination mechanisms in these UVC-LED samples. Experimental results reveal that, at relatively low electrical-current levels, the contribution of Shockley-Read-Hall (SRH) recombination exceeds those of the Auger recombination and carrier leakage. At relatively high electrical-current levels, the Auger recombination and carrier leakage jointly dominate the EQE droop phenomenon. Moreover, the inactivation efficiencies of 222 nm excimer lamp, 254 nm portable Mercury lamp, 265 nm, 280 nm, and 285 nm UVC-LED arrays in the inactivation ofEscherichia colihave been experimentally investigated, which could provide a technical reference for fighting against the new COVID-19.

7.
Adv Mater ; 35(30): e2300834, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37080636

RESUMO

Lead halide perovskite quantum dots (PQDs) are making their way toward next-generation display applications, such as serving as color conversion layers in micro-light-emitting-diode (micro-LED) arrays. Red PQDs containing iodine exhibit weaker brightness compared with their green counterpart when employed as color conversion layers. Therefore, PQDs with enhanced brightness are highly favorable for micro/mini-LED displays. A universal strategy of bicomponent perovskite nanocomposite (BPNC) with significantly enhanced photoluminescence (PL) intensity is proposed through the built-in Förster resonance energy transfer (FRET) from the core CsPbBr3 to the shell γ-CsPbI3 , and it is confirmed that it is through a pair of combined quasi-degenerate energy levels in the blue spectra region that the FRET is conducted, resulting in a high excitation wavelength selectivity. Owing to the highly efficient energy transition route from blue excitation to red emission established by the FRET, the BPNC exhibits the brightest single-peak red photoluminescence with near 100% quantum yield. The BPNC with FRET is further proven to be adaptable to a wide range of emission wavelengths. The BPNCs in a blue micro-LED array are employed as color downconversion layers, and excellent color conversion properties and high color gamut are demonstrated. This strategy of BPNC paves a road to the full-color micro-LED displays.

8.
Front Immunol ; 13: 855078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784328

RESUMO

The lncRNA MIR4435-2 host gene (MIR4435-2HG) is located on human chromosome 2q13, and its expression is up-regulated in 18 tumors. MIR4435-2HG participates in 6 signaling pathways to promote tumorigenesis, including the TGF-ß signaling pathway, Wnt/ß-catenin signaling pathway, MDM2/p53 signaling pathway, PI3K/AKT signaling pathway, Hippo signaling pathway, and MAPK/ERK signaling pathway. MIR4435-2HG competitively binds with 20 miRNAs to form a complex ceRNA network, thereby regulating the expression of downstream target genes. The high expression of MIR4435-2HG is also closely related to the clinicopathological characteristics and poor prognosis of a variety of tumors. Also, the high expression of MIR4435-2HG in peripheral blood or serum has the value of predicting the risk of 9 tumors. In addition, MIR4435-2HG participates in the mechanism of action of three cancer drugs, including resveratrol for the treatment of lung cancer, cisplatin for non-small cell lung cancer and colon cancer, and carboplatin for triple-negative breast cancer. This article systematically summarizes the diagnostic and prognostic value of MIR4435-2HG in a variety of tumors and outlines the ceRNA network and signaling pathways related to MIR4435-2HG, which will provide potential directions for future MIR4435-2HG research.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Via de Sinalização Wnt
9.
Biomed Pharmacother ; 152: 113239, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679722

RESUMO

LINC00461 is located in the intergenic region between the protein-coding genes MEF2C and TMEM161B. LINC00461 upregulation was associated with the risk of 13 tumors and was strongly associated with clinicopathologic features and poor prognosis in 11 tumors. LINC00461 is involved in resistance to four anticancer drugs, including sunitinib for renal cell carcinoma, cisplatin for head and neck squamous cell carcinoma and rectal cancer, temozolomide for glioma, and docetaxel for breast cancer. LINC00461 can sponge 18 miRNAs to form a complex ceRNA network that regulates the expression of a large number of downstream genes. LINC00461 is involved in the MAPK/ERK signaling pathway and PI3K/AKT signaling pathway, thereby promoting tumorigenesis. Notably, knockdown of LINC00461 in exosomes antagonizes tumor cell proliferation in multiple myeloma. This article summarizes the diagnostic, prognostic, and therapeutic value of LINC00461 in various tumors, and systematically describes the ceRNA network and signaling pathways associated with LINC00461, providing potential directions for future LINC00461 research.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , RNA Longo não Codificante , Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
10.
Cells ; 11(9)2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563845

RESUMO

Long intergenic noncoding RNA 00665 (LINC00665) is located on human chromosome 19q13.12. LINC00665 was upregulated in eighteen cancers and downregulated in two cancers. LINC00665 not only inhibits 25 miRNAs but also directly affects the stability of ten protein-coding genes. Notably, LINC00665 also encodes a micro-peptide CIP2A-BP that promotes triple-negative breast cancer progression. LINC00665 can participate in five signaling pathways to regulate cancer progression, including the Wnt/ß-catenin signaling pathway, TGF-ß signaling pathway, NF-κB signaling pathway, PI3K/AKT signaling pathway, and MAPK signaling pathway. Aberrant expression of LINC00665 in breast cancer, gastric cancer, and hepatocellular carcinoma can be used for disease diagnosis. In addition, aberrant expression of LINC00665 is closely associated with clinicopathological features and poor prognosis of various cancers. LINC00665 is closely associated with the effects of anticancer drugs, including gefitinib and cisplatin in non-small cell lung cancer, gemcitabine in cholangiocarcinoma, and cisplatin-paclitaxel in breast cancer. This work systematically summarizes the diagnostic and prognostic values of LINC00665 in various tumors, and comprehensively analyzes the molecular regulatory mechanism related to LINC00665, which is expected to provide clear guidance for future research.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , RNA Longo não Codificante , Neoplasias de Mama Triplo Negativas , Ductos Biliares Intra-Hepáticos , Biomarcadores , Cisplatino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Via de Sinalização Wnt
11.
Front Cell Dev Biol ; 10: 784968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465322

RESUMO

miR-874 is located at 5q31.2, which is frequently deleted in cancer. miR-874 is downregulated in 22 types of cancers and aberrantly expressed in 18 types of non-cancer diseases. The dysfunction of miR-874 is not only closely related to the diagnosis and prognosis of tumor patients but also plays an important role in the efficacy of tumor chemotherapy drugs. miR-874 participates in the ceRNA network of long non-coding RNAs or circular RNAs, which is closely related to the occurrence and development of cancer and other non-cancer diseases. In addition, miR-874 is also involved in the regulation of multiple signaling pathways, including the Wnt/ß-catenin signaling pathway, Hippo signaling pathway, PI3K/AKT signaling pathway, JAK/STAT signaling pathway, and Hedgehog signaling pathway. This review summarizes the molecular functions of miR-874 in the biological processes of tumor cell survival, apoptosis, differentiation, and tumorigenesis, and reveal the value of miR-874 as a cancer biomarker in tumor diagnosis and prognosis. Future work is necessary to explore the potential clinical application of miR-874 in chemotherapy resistance.

12.
Biomed Pharmacother ; 150: 113019, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462329

RESUMO

Long intergenic noncoding RNA 00963 (LINC00963) is located on human chromosome 9q34.11. Aberrantly expressed LINC00963 often exerts oncogenic effects by regulating various cellular processes including proliferation, migration, invasion, EMT, and apoptosis. Overexpressed LINC00963 is associated with cancer clinicopathological features and poor cancer prognosis, and can be used in the diagnosis of hepatocellular carcinoma. LINC00963 can build a complex ceRNA network by competitively binding to 22 miRNAs in 14 cancers. LINC00963 can also directly regulate four downstream protein-coding genes. Specifically, LINC00963 promotes the transition of prostate cancer from an androgen-dependent mode to an androgen-independent mode by participating in the transactivation of EGFR. LINC00963 can bind EZH2 and inhibit p21 expression, thereby promoting glioma cell proliferation and invasion. In non-small cell lung cancer, LINC00963 can recruit NONO and CRTC, forming a positive feedback loop of LINC00963/NONO/CRTC/CREB/LINC00963, thereby promoting cancer cell metastasis. LINC00963 is involved in the PI3K/AKT signaling pathway, Wnt signaling pathway, AMPK signaling pathway, and MAPK signaling pathway. Furthermore, LINC00963 is associated with drug resistance in oral squamous cell carcinoma (cisplatin and 5-fluorouracil) and gastric cancer (oxaliplatin) and predicts neoadjuvant efficacy of taxane-anthracyclines in breast cancer. This work systematically reviewed the clinical value of abnormal expression of LINC00963 in various tumors, demonstrated the complex molecular mechanism of LINC00963, and provided directions for future related research.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Androgênios , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Pulmonares/genética , Masculino , MicroRNAs/genética , Neoplasias Bucais/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Longo não Codificante/metabolismo
13.
Front Cell Dev Biol ; 10: 809132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252180

RESUMO

miRNAs play an important role in the occurrence and development of human cancer. Among them, hsa-mir-1269a and hsa-mir-1269b are located on human chromosomes 4 and 17, respectively, and their mature miRNAs (miR-1269a and miR-1269b) have the same sequence. miR-1269a is overexpressed in 9 cancers. The high expression of miR-1269a not only has diagnostic significance in hepatocellular carcinoma and non-small cell lung cancer but also is related to the poor prognosis of cancer patients such as esophageal cancer, hepatocellular carcinoma, and glioma. miR-1269a can target 8 downstream genes (CXCL9, SOX6, FOXO1, ATRX, RASSF9, SMAD7, HOXD10, and VASH1). The expression of miR-1269a is regulated by three non-coding RNAs (RP11-1094M14.8, LINC00261, and circASS1). miR-1269a participates in the regulation of the TGF-ß signaling pathway, PI3K/AKT signaling pathway, p53 signaling pathway, and caspase-9-mediated apoptotic pathway, thereby affecting the occurrence and development of cancer. There are fewer studies on miR-1269b compared to miR-1269a. miR-1269b is highly expressed in hepatocellular carcinoma, non-small cell lung cancer, oral squamous cell carcinoma, and pharyngeal squamous cell carcinoma, but miR-1269b is low expressed in gastric cancer. miR-1269b can target downstream genes (METTL3, CDC40, SVEP1, and PTEN) and regulate the PI3K/AKT signaling pathway. In addition, sequence mutations on miR-1269a and miR-1269b can affect their regulation of cancer. The current studies have shown that miR-1269a and miR-1269b have the potential to be diagnostic and prognostic markers for cancer. Future research on miR-1269a and miR-1269b can focus on elucidating more of their upstream and downstream genes and exploring the clinical application value of miR-1269a and miR-1269b.At present, there is no systematic summary of the research on miR-1269a and miR-1269b. This paper aims to comprehensively analyze the abnormal expression, diagnostic and prognostic value, and molecular regulatory pathways of miR-1269a and miR-1269b in multiple cancers. The overview in our work can provide useful clues and directions for future related research.

14.
Biomed Pharmacother ; 149: 112896, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35358797

RESUMO

MiRNA accounts for 1-3% of genes but regulates more than 30% of gene expression in humans. This article analyzes the current deficiencies and challenges of miR-411 research and looks forward to the prospects of miR-411 in cancer. MiR-411 is a non-coding RNA located on chromosome 14. MiR-411 is abnormally expressed in a variety of cancers. The dysregulation of miR-411 can affect cancer cell proliferation, invasion, migration, apoptosis, colony formation, etc. miR-411 can be regulated by different lncRNAs and circRNAs. By targeting multiple genes, miR-411 participates in the activation of the MAPK signaling pathway, PI3K/AKT/mTOR signaling pathway, p53 signaling pathway, Ras signaling pathway, NF-κB signaling pathway, and Wnt/ß-catenin signaling pathway. The expression of miR-411 is related to the diagnosis, prognosis, and sensitivity of drugs in cancer patients. In conclusion, this work outlines the molecular mechanisms and cellular functions of aberrant expression of miR-411 and its target genes in cancer to reveal its potential value in diagnosis, prognosis, and drug sensitivity.


Assuntos
MicroRNAs , Neoplasias , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Via de Sinalização Wnt/genética
15.
J Cell Physiol ; 237(2): 1105-1118, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34647332

RESUMO

LINC00662 is located on chromosome 19q11 and is 2085 bp long. It is a long noncoding RNA (lncRNA) newly discovered. LINC00662 expression is upregulated in at least 14 tumors. In addition, the upregulation of LINC00662 expression is also closely related to the poor prognosis of cancer patients and resistance to radiotherapy and chemotherapy. LINC00662 can act as a ceRNA of at least 8 miRNAs. By regulating these miRNAs and their downstream genes, LINC00662 participates in the regulation of four signaling pathways, including the extracellular signal-regulated kinase (ERK) signaling pathway, the Wnt/ß-catenin signaling pathway, the Hippo signaling pathway, and the SMD signaling pathway. In addition, the abnormal upregulation of LINC00662 can promote the stem-like features of lung cancer cells. LINC00662 can reduce the promoter methylation level of s-adenosylmethionine (SAM)-dependent hepatocellular carcinoma (HCC)-promoting genes by regulating the MAT1A/SAM and AHCY/SAH axes, thereby promoting the activation of oncogenes. This article summarizes the molecular regulation mechanism of LINC00662 in cancer and the diagnostic and prognostic value of LINC00662 in cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Oncogenes , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , S-Adenosilmetionina , Via de Sinalização Wnt
16.
Biomed Pharmacother ; 143: 112235, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649358

RESUMO

Long non-coding RNA (lncRNA) plays an important regulatory role in the occurrence and development of human cancer. LINC00858 is a newly discovered lncRNA with a length of 2685 nucleotides. Existing studies have shown that LINC00858 has abnormally high expression levels in malignant tumors such as colorectal cancer, gastric cancer, hepatocellular carcinoma, lung cancer, non-small cell lung cancer, ovarian cancer, osteosarcoma, retinoblastoma, Wilms tumor, bladder cancer, and cervical cancer. By regulating a variety of microRNAs, LINC00858 can affect tumor cell proliferation, invasion, metastasis, and apoptosis. Related research also found that LINC00858 is related to nuclear transcription factor/protein kinase and gene methylation. The aberrant expression of LINC00858 is related to the prognosis and clinicopathological characteristics of a variety of tumors. Overexpressed LINC00858 is closely related to the clinical stage, lymph node metastasis, and distant metastasis of cancer, including colorectal cancer, gastric cancer, non-small cell lung cancer, ovarian cancer, and Wilms tumor. Also, it is summarized that LINC00858 can regulate MAPK and TGF-ß signaling pathways. This review shows that LINC00858 as an important oncogene can promote tumorigenesis and cancer development.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/genética , Neoplasias/patologia , RNA Longo não Codificante/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
17.
Front Oncol ; 11: 743701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676171

RESUMO

miR-873 is a microRNA located on chromosome 9p21.1. miR-873-5p and miR-873-3p are the two main members of the miR-873 family. Most studies focus on miR-873-5p, and there are a few studies on miR-873-3p. The expression level of miR-873-5p was down-regulated in 14 cancers and up-regulated in 4 cancers. miR-873-5p has many targeted genes, which have unique molecular functions such as catalytic activity, transcription regulation, and binding. miR-873-5p affects cancer development through the PIK3/AKT/mTOR, Wnt/ß-Catenin, NF-κß, and MEK/ERK signaling pathways. In addition, the target genes of miR-873-5p are closely related to the proliferation, apoptosis, migration, invasion, cell cycle, cell stemness, and glycolysis of cancer cells. The target genes of miR-873-5p are also related to the efficacy of several anti-cancer drugs. Currently, in cancer, the expression of miR-873-5p is regulated by a variety of epigenetic factors. This review summarizes the role and mechanism of miR-873-5p in human tumors shows the potential value of miR-873-5p as a molecular marker for cancer diagnosis and prognosis.

18.
Front Oncol ; 11: 789626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35070996

RESUMO

miR-1301 is a newly discovered miRNA, which is abnormally expressed in 14 types of tumors. miR-1301 inhibits 23 target genes, forms a ceRNA network with 2 circRNAs and 8 lncRNAs, and participates in 6 signaling pathways, thereby affecting tumor cell proliferation, invasion, metastasis, apoptosis, angiogenesis, etc. Abnormal expression of miR-1301 is often associated with poor prognosis of cancer patients. In addition, miR-1301 is related to the anti-tumor effect of epirubicin on osteosarcoma and imatinib on chronic myeloid leukemia(CML) and can enhance the cisplatin sensitivity of ovarian cancer. This work systematically summarizes the abnormal expression and prognostic value of miR-1301 in a variety of cancers, depicts the miR-1301-related signaling pathways and ceRNA network, and provides potential clues for future miR-1301 research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA