Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(10): 12010-12017, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053341

RESUMO

As one of the most promising drug delivery carriers, hydrogels have received considerable attention in recent years. Many previous efforts have focused on diffusion-controlled release, which allows hydrogels to load and release drugs in vitro and/or in vivo. However, it hardly applies to lipophilic drug delivery due to their poor compatibility with hydrogels. Herein, we propose a novel method for lipophilic drug release based on a dual pH-responsive hydrogel actuator. Specifically, the drug is encapsulated and can be released by a dual pH-controlled capsule switch. Inspired by the deformation mechanism of Drosera leaves, we fabricate the capsule switch with a double-layer structure that is made of two kinds of pH-responsive hydrogels. Two layers are covalently bonded together through silane coupling agents. They can bend collaboratively in a basic or acidic environment to achieve the "turn on" motion of the capsule switch. By incorporating an array of parallel elastomer stripes on one side of the hydrogel bilayer, various motions (e.g., bending, twisting, and rolling) of the hydrogel bilayer actuator were achieved. We conducted an in vitro lipophilic drug release test. The feasibility of this new drug release method is verified. We believe this dual pH-responsive actuator-controlled drug release method may shed light on the possibilities of various drug delivery systems.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Resinas Acrílicas/química , Cápsulas/química , Sistemas de Liberação de Medicamentos , Elastômeros/química
2.
iScience ; 22: 534-543, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31841971

RESUMO

Heat is crucial to the long-term stability of perovskite solar cells (PVSCs). Herein, thermal stability of PVSCs based on metal oxide (MO) and polymer (P) was investigated. Firstly, chemical decomposition behavior of perovskite films was characterized and analyzed, revealing that chemically active MO would accelerate the decomposition of methylamine lead iodide (MAPbI3). Secondly, thermal-induced stress, resulting from the mismatched thermal expansion coefficients of different layers of PVSCs, and its effect on the mechanical stability of perovskite films were studied. Combining experiment and simulation, we conclude that "soft" (low modulus) and thick (>20 nm) interfacial layers offer better relaxation of thermal-induced stress. As a result, PVSCs employing thick polymer interfacial layer offer a remarkably improved thermal stability. This work offers not only the degradation insight of perovskite films on different substrates but also the path toward highly thermal stable PVSCs by rational design of interfacial layers.

3.
ACS Appl Mater Interfaces ; 10(29): 24758-24766, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29968470

RESUMO

Soft display has been intensively studied in recent years in the wake of rapid development of a variety of soft materials. The currently existing solutions for translating the traditional hard display into the more convenient soft display mainly include light-emitting diodes, liquid crystals, quantum dots, and phosphors. The desired soft display should take the advantages of facile fabrication processes and cheap raw materials. Besides, the device should be colorful, nontoxic, and not only flexible but also stretchable. However, the foregoing devices may not own all of the desired features. Here, a new type of soft display, which consists of dielectric elastomer and photonic crystals that cover all of the features mentioned above and can achieve the color change dynamically and in situ, is reported. In addition to the above features, the angle-dependent characteristic and the excellent mechanical reliability make it a great candidate for the next generation of soft display. Finally, the vast applications of the present concept in a variety of fields are also prospected.

4.
Soft Matter ; 14(7): 1120-1129, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29340413

RESUMO

The tunable diffracted pattern (Debye ring) of the well-ordered close-packed 2D photonic crystal (PC) is achieved via large deformation of the dielectric elastomer (DE) membrane for the first time. Two deformation models are proposed, the in-plane deformation driven by voltage and the out-of-plane deformation actuated by pressure. Both experimental and theoretical analyses are conducted to explore the tunability of the DE stretch on the Debye ring of the 2D PC, by voltage and pressure. An excellent agreement is found between the experimental and analytical results. This study shows that tuning the size of the Debye ring by voltage driven in-plane deformation is easy to operate and space-saving. However, it needs a high voltage and the adjustable range is relatively small. On the other hand, the pneumatic tuning by out-of-plane deformation has a widely adjustable range compared with the electric one and the pressure needed is only hundreds to less than two thousand pascal, which is energy-saving. This work may pave the way for the design of various smart sensors and soft displays with the combination of PCs and DEs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA