Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Eur J Med Res ; 28(1): 334, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689799

RESUMO

BACKGROUND: Treatment for cancer patients presenting with acute myocardial infarction (AMI) remains challenging. The objective of the study was to investigate the safety and efficiency of drug eluting balloon (DEB) versus drug eluting stent (DES) in this high-risk group. METHODS: Between 1st January 2017 and 1st January 2022, cancer patients admitted to Beijing Chaoyang Hospital with AMI were retrospectively enrolled. The primary endpoint was major adverse cardiovascular event (MACE). The secondary endpoints included major bleeding events, heart failure and cardiac complications. RESULTS: A total of 164 cancer patients presenting with AMI were included in the final analysis. Patients treated with DEB had a numerically lower rate of MACE than those treated with DES during a median follow-up of 21.8 months (22.9% vs. 37.1%, p = 0.23). Patients treated with DEB had a trend towards lower rate of major bleeding events than patients treated with DES (6.3% vs. 18.1%, HR 2.96, 95% CI [0.88, 9.92], p = 0.08). There were no significant differences between the two groups with regards to the rate of heart failure (4.2% vs. 9.5%, p = 0.32) and cardiac complications (0.0% vs. 2.6%, p = 0.56). CONCLUSIONS: The present study demonstrated that in cancer patients with AMI, DEB had a trend towards lower rate of major bleeding events and a numerically lower rate of MACE compared with DES.


Assuntos
Stents Farmacológicos , Insuficiência Cardíaca , Infarto do Miocárdio , Neoplasias , Humanos , Stents Farmacológicos/efeitos adversos , Estudos Retrospectivos , Infarto do Miocárdio/cirurgia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Hospitalização , Neoplasias/complicações
2.
Int J Surg ; 109(8): 2414-2426, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37161443

RESUMO

BACKGROUND: Whether there are differences among the new-generation transcatheter aortic valve implantation (TAVI) devices for patients with aortic stenosis remains unclear. The aim of the study was to compare the efficiency and safety of different new-generation TAVI devices for patients with aortic stenosis. MATERIALS AND METHODS: A comprehensive search of PubMed, Embase and Web of Science from their inception to 1 February 2022. Randomized clinical trials and observational studies that compared two or more different TAVI devices were enroled. Pairwise meta-analysis and frequentist network meta-analysis were conducted to pool the outcome estimates of interest. RESULTS: A total of 79 studies were finally included. According to the surface under the cumulative ranking, the top two ranked valves for lower rates of events were as follows: direct flow medical (DFM) (4.6%) and Lotus (48.8%) for lower rate of device success; Sapien 3 (16.8%) and DFM (19.7%) for lower mortality; DFM (8.6%) and Sapien 3 (25.5%) for lower rates of stroke; Evolut (27.6%) and DFM (35.8%) for lower rates of major and life-threatening bleeding; Portico (22.6%) and Sapien 3 (41.9%) for lower rates of acute kidney injury; Acurate (8.6%) and DFM (13.2%) for lower rates of permanent pacemaker implantation; Lotus (0.3%) and Sapien 3 (22.7%) for lower rates of paravalvular leak; Evolut (1.4%) and Portico (29.1%) for lower rates of mean aortic valve gradients. CONCLUSIONS: The findings of the present study suggested that the device success rates were comparable among these new-generation valves except for DFM. After excluding DFM, Sapien 3 might be the best effective for decreased mortality and stroke; Lotus might be the best effective for decreased paravalvular leak; Evolut might be the best effective for decreased major and life-threatening bleeding and mean aortic valve gradients; Acurate and Portico might be the best effective for decreased permanent pacemaker implantation and acute kidney injury, respectively.


Assuntos
Injúria Renal Aguda , Estenose da Valva Aórtica , Próteses Valvulares Cardíacas , Acidente Vascular Cerebral , Substituição da Valva Aórtica Transcateter , Humanos , Substituição da Valva Aórtica Transcateter/efeitos adversos , Valva Aórtica/cirurgia , Metanálise em Rede , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Resultado do Tratamento , Desenho de Prótese , Índice de Gravidade de Doença , Estenose da Valva Aórtica/cirurgia
3.
J Clin Med ; 12(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36675362

RESUMO

BACKGROUND: Ischemia reperfusion injury (IRI) remains a major problem in patients with acute ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI). We have developed a novel reperfusion strategy for PCI and named it "volume-controlled reperfusion (VCR)". The aim of the current study was to assess the safety and feasibility of VCR in patients with STEMI. METHODS: Consecutive patients admitted to Beijing Chaoyang Hospital with STEMI were prospectively enrolled. The feasibility endpoint was procedural success. The safety endpoints included death from all causes, major vascular complications, and major adverse cardiac event (MACE), i.e., a composite of cardiac death, myocardial reinfarction, target vessel revascularization (TVR), and heart failure. RESULTS: A total of 30 patients were finally included. Procedural success was achieved in 28 (93.3%) patients. No patients died during the study and no major vascular complications or MACE occurred during hospitalization. With the exception of one patient (3.3%) who underwent TVR three months after discharge, no patient encountered death (0.0%), major vascular complications (0.0%), or and other MACEs (0.0%) during the median follow-up of 16 months. CONCLUSION: The findings of the pilot study suggest that VCR has favorable feasibility and safety in patients with STEMI. Further larger randomized trials are required to evaluate the effectiveness of VCR in STEMI patients.

4.
Cell Stress Chaperones ; 28(1): 91-103, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510036

RESUMO

Doxorubicin (DOX) is a chemotherapeutic drug for a variety of malignancies, while its application is restricted by the cardiovascular toxic effects characterized by oxidative stress. Ferroptosis is a novel iron-dependent regulated cell death driven by lipid peroxidation. Our study aimed to investigate the role of Elabela (ELA) in DOX-induced oxidative stress and ferroptosis. In cultured rat aortic adventitial fibroblasts (AFs), stimulation with DOX dramatically induced cytotoxicity with reduced cell viability and migration ability, and enhanced lactate dehydrogenase (LDH) activity. Importantly, ELA and ferrostatin-1 (Fer-1) mitigated DOX-mediated augmentation of reactive oxygen species (ROS) in rat aortic AFs, accompanied by upregulated levels of Nrf2, SLC7A11, GPX4, and GSH. In addition, ELA reversed DOX-induced dysregulation of apoptosis- and inflammation-related factors including Bax, Bcl2, interleukin (IL)-1ß, IL6, IL-10, and CXCL1. Intriguingly, knockdown of Krüppel-like factor 15 (KLF15) by siRNA abolished ELA-mediated alleviation of ROS production and inflammatory responses. More importanly, KLF15 siRNA impeded the beneficial roles of ELA in DOX-pretreated rat aortic AFs by suppressing the Nrf2/SLC7A11/GPX4 signaling. In conclusion, ELA prevents DOX-triggered promotion of cytotoxicity, and exerts anti-oxidative and anti-ferroptotic effects in rat aortic AFs via activation of the KLF15/GPX4 signaling, indicating a promising therapeutic value of ELA in antagonizing DOX-mediated cardiovascular abnormality and disorders.


Assuntos
Ferroptose , Animais , Ratos , Doxorrubicina/farmacologia , Fibroblastos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Free Radic Biol Med ; 193(Pt 1): 459-473, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36334846

RESUMO

Hypertension is one of the leading causes of chronic kidney disease characterized with renal fibrosis. This study aimed to investigate roles and mechanisms of sirtuin 7 (SIRT7) in hypertensive renal injury. Mini-pumps were implanted to male C57BL/6 mice to deliver angiotensin (Ang) Ⅱ (1.5 mg/kg/d) or saline for 2 weeks. Ang Ⅱ infusion resulted in marked increases in systolic blood pressure levels, renal ferroptosis and interstitial fibrosis in hypertensive mice, concomitantly with downregulated SIRT7 and Krüppel-like factor 15 (KLF15) levels. Notably, administration of recombinant adeno-associated virus-SIRT7 or ferroptosis inhibitor ferrostatin-1 effectively mitigated Ang Ⅱ-triggered renal ferroptosis, epithelial-mesenchymal transition (EMT), interstitial fibrosis, renal functional and structural injury in hypertensive mice by blunting the KIM-1/NOX4 signaling and enforcing the KLF15/Nrf2 and xCT/GPX4 signaling, respectively. In primary cultured mouse renal tubular epithelial cells (TECs), Ang Ⅱ pretreatment led to repressed SIRT7 expression and augmented ferroptosis as well as partial EMT, which were substantially antagonized by rhSIRT7 or ferrostatin-1 administration. Additionally, both Nrf2 inhibitor ML385 and KLF15 siRNA strikingly abolished the rhSIRT7-mediated beneficial roles in mouse renal TECs in response to Ang Ⅱ with reduced expression of Nrf2, xCT and GPX4. More importantly, ML385 administration remarkably amplified Ang Ⅱ-mediated ROS generation, lipid peroxidation and ferroptosis in renal TECs, which were significantly reversed by ferrostatin-1. In conclusion, SIRT7 alleviates renal ferroptosis, lipid peroxidation, and partial EMT under hypertensive status by facilitating the KLF15/Nrf2 signaling, thereby mitigating renal fibrosis, injury and dysfunction. Targeting SIRT7 signaling serves as a promising strategy for hypertension and hypertensive renal injury.


Assuntos
Ferroptose , Hipertensão , Nefropatias , Sirtuínas , Animais , Masculino , Camundongos , Angiotensina II/metabolismo , Ferroptose/genética , Fibrose , Hipertensão/metabolismo , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo
6.
Nutrients ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296961

RESUMO

Pulmonary arterial hypertension (PAH) is a malignant pulmonary vascular disease characterized by increased pulmonary vascular resistance, pulmonary vasoconstriction, and right ventricular hypertrophy. Recent developments in genomics and metabolomics have gradually revealed the roles of the gut microbiota (GM) and its metabolites in cardiovascular diseases. Accumulating evidence reveals that the GM plays important roles in the occurrence and development of PAH. Gut microbiota dysbiosis directly increases the gut permeability, thereby facilitating pathological bacterial translocation and allowing translocation of bacterial products such as lipopolysaccharides from the gut into circulation. This process aggravates pulmonary perivascular inflammation and exacerbates PAH development through the endothelial-mesenchymal transition. Additionally, a shift in the composition of PAH also affects the gut metabolites. Changes in gut metabolites, such as decreased short-chain fatty acids, increased trimethylamine N-oxide, and elevated serotonin, contribute to pulmonary perivascular inflammation and pulmonary vascular remodeling by activating several signaling pathways. Studies of the intestinal microbiota in treating pulmonary hypertension have strengthened linkages between the GM and PAH. Probiotic therapy and fecal microbiota transplantation may supplement existing PAH treatments. In this article, we provide new insight for diagnosing, preventing and treating PAH by adding to the current knowledge of the intestinal flora mechanisms and its metabolites efficacy involved in PAH.


Assuntos
Microbioma Gastrointestinal , Probióticos , Hipertensão Arterial Pulmonar , Humanos , Lipopolissacarídeos , Serotonina , Disbiose/microbiologia , Ácidos Graxos Voláteis , Inflamação
7.
Eur J Pharmacol ; 925: 174977, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513019

RESUMO

Cardiovascular disorders and associated renal diseases account for the main cause of morbidity and mortality worldwide, necessitating the development of novel effective approaches for the prevention and treatment of cardiorenal diseases. Mammalian sirtuins (SIRTs) function as nicotinamide adenine dinucleotide (NAD+)-dependent protein/histone deacetylases. Seven members of SIRTs share a highly invariant catalytic core domain responsible for the specific enzymatic activity. Intriguingly, the broad distribution of SIRTs and alternative isoforms implicate its distinct functions in diverse cardiac and renal cells and tissue types. Notably, SIRT7 has been shown to exert beneficial effects in cardiorenal physiology and pathophysiology via modulation of senescence, DNA damage repair, ribosomal RNA synthesis, protein biosynthesis, angiogenesis, apoptosis, superoxide generation, cardiorenal metabolism, and dysfunction. Furthermore, SIRT7 has emerged as a critical modulator of a broad range of cellular activities including oxidative stress, inflammation response, endoplasmic reticulum stress, and mitochondrial homeostasis, which are all of great significance in postponing the progression of cardiorenal diseases. More importantly, SIRT7 has been implicated in cardiorenal hypertrophy, fibrosis, remodeling, heart failure, atherosclerosis as well as renal acid-base and electrolyte homeostasis as an essential regulator. In this article, we focus on the involvement in cardiorenal physiology and pathophysiology, diverse actions and underlying mechanisms of the SIRT7 signaling, highlighting its updated research progress in heart failure, atherosclerosis, diabetic nephropathy and other cardiorenal diseases. Targeting SIRT7 signaling could be potentially exploited as a therapeutic strategy aiming to prevent and treat cardiorenal diseases.


Assuntos
Aterosclerose , Cardiopatias , Insuficiência Cardíaca , Hipertensão Renal , Sirtuínas , Animais , Cardiopatias/tratamento farmacológico , Mamíferos/metabolismo , Nefrite , Sirtuínas/metabolismo
8.
In Vitro Cell Dev Biol Anim ; 58(2): 136-148, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35133561

RESUMO

MicroRNAs (miRNAs) have emerged as essential regulators that could have pivotal roles in cardiac homeostasis and pathological remodeling of various cardiovascular diseases. We previously demonstrated that miRNA-122-5p overexpression exacerbated the process of vascular hypertrophy, fibrosis, and dysfunction in hypertensive rats and rat aortic adventitial fibroblasts. However, the exact roles and underlying mechanisms of miRNA-122-5p in myocardial fibroblasts remain largely unknown. In this work, neonatal rat cardiofibroblasts (CFs) were isolated and primarily cultured from the hearts of 2- to 3-d-old Sprague-Dawley rats. Stimulation of angiotensin II (Ang II) resulted in marked increases in cellular proliferation and migration and levels of collagen I, collagen III, CTGF, and TGF-ß1 in cultured CFs. Furthermore, Ang II led to promoted expression of P62, Bax, and phosphorylated mTOR as well as downregulation of LC3II, beclin-1, and AMPK-phosphorylated levels, thereby contributing to imbalance of autophagy and apoptosis, and cellular injury in CFs, which were significantly ameliorated by treatment with miRNA-122-5p inhibitor. These changes were associated with decreased levels of collagen I, collagen III, CTGF, and TGF-ß1. Furthermore, Ang II-induced loss of autophagy and promotion of apoptosis in CFs were prevented by the treatment with Pyr1-apelin-13 or AMPK agonist AICAR or mTOR inhibitor rapamycin, respectively. In contrast, administration of miRNA-122-5p mimics and autophagy inhibitor 3-methylademine reversed beneficial roles of Pyr1-apelin-13. Collectively, these data indicated that miRNA-122-5p is an essential regulator of autophagy and apoptosis in rat CFs via the apelin/AMPK/mTOR signaling pathway, which may be potentially used as a therapeutic target in myocardial fibrosis and related diseases.


Assuntos
Angiotensina II , MicroRNAs , Proteínas Quinases Ativadas por AMP/metabolismo , Angiotensina II/farmacologia , Animais , Apelina , Apoptose/genética , Autofagia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
Exp Cell Res ; 411(2): 113017, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34998813

RESUMO

Hypertensive renal injury is accompanied by tubular interstitial fibrosis leading to increased risk for renal failure. This study aimed to explore the influences of miR-122-5p in hypertension-mediated renal fibrosis and damage. 14-week-old male SHR and WKY rats were randomly assigned to treat with rAAV-miR-122-5p or rAAV-GFP for 8 weeks. There were marked increases in miR-122-5p and Kim-1 levels and decreases in FOXO3 and SIRT6 levels in hypertensive rats. Transfection with rAAV-miR-122-5p triggered exacerbation of renal fibrosis, apoptosis and inflammatory injury in SHR, associated with downregulated levels of FOXO3, SIRT6, ATG5 and BNIP3 as well as upregulated expression of Kim-1, NOX4, CTGF, and TGF-ß1. In cultured primary mouse renal tubular interstitial fibroblasts, exposure to angiotensin II resulted in obvious downregulation of FOXO3, SIRT6, ATG5, BNIP3 and nitric oxide levels as well as augmented cellular migration, oxidative stress, and inflammation, which were exacerbated by miR-122-5p mimic while rescued by miR-122-5p inhibitor and rhFOXO3, respectively. Notably, knockdown of FOXO3 strikingly blunted cellular protective effects of miR-122-5p inhibitor. In summary, miR-122-5p augments renal fibrosis, inflammatory and oxidant injury in hypertensive rats by suppressing the expression of FOXO3. Pharmacological inhibition of miR-122-5p has potential therapeutic significance for hypertensive renal injury and fibrosis-related kidney diseases.


Assuntos
Proteína Forkhead Box O3/antagonistas & inibidores , Hipertensão/metabolismo , Hipertensão/patologia , Rim/lesões , Rim/metabolismo , MicroRNAs/genética , Animais , Apoptose , Autofagia , Modelos Animais de Doenças , Regulação para Baixo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Técnicas de Silenciamento de Genes , Hipertensão/complicações , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Regulação para Cima
10.
Heart Fail Rev ; 27(1): 345-355, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32648149

RESUMO

Cardiovascular disease (CVD) is the leading cause of death worldwide and encompasses diverse diseases of the vasculature, myocardium, cardiac electrical circuit, and cardiac development. Forkhead box protein P1 (Foxp1) is a large multi-domain transcriptional regulator belonging to the Fox family with winged helix DNA-binding protein, which plays critical roles in cardiovascular homeostasis and disorders. The broad distribution of Foxp1 and alternative splicing isoforms implicate its distinct functions in diverse cardiac and vascular cells and tissue types. Foxp1 is essential for diverse biological processes and has been shown to regulate cellular proliferation, apoptosis, oxidative stress, fibrosis, angiogenesis, cardiovascular remodeling, and dysfunction. Notably, both loss-of-function and gain-of-function approaches have defined critical roles of Foxp1 in CVD. Genetic deletion of Foxp1 results in pathological cardiac remodeling, exacerbation of atherosclerotic lesion formation, prolonged occlusive thrombus formation, severe cardiac defects, and embryo death. In contrast, activation of Foxp1 performs a wide range of physiological effects, including cell growth, hypertrophy, differentiation, angiogenesis, and cardiac development. More importantly, Foxp1 exerts anti-inflammatory and anti-atherosclerotic effects in controlling coronary thrombus formation and myocardial infarction (MI). Thus, targeting for Foxp1 signaling has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of CVD, and an increased understanding of cardiovascular actions of the Foxp1 signaling will help to develop effective interventions. In this review, we focus on the diverse actions and underlying mechanisms of Foxp1 highlighting its roles in CVD, including heart failure, MI, atherosclerosis, congenital heart defects, and atrial fibrillation.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , Fatores de Transcrição Forkhead , Humanos , Miocárdio , Proteínas Repressoras
11.
BMC Cardiovasc Disord ; 21(1): 390, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384364

RESUMO

BACKGROUND: Atrial fibrillation (AF) is a common arrhythmia in patients with hypertension. ELABELA, which has cardioprotective effects, is decreased in the plasma of patients with hypertension and might be associated with AF in the hypertensive population. This study aims to measure the ELABELA plasma levels in hypertension patients with and without AF and to analyse the related factors. METHODS: A total of 162 hypertension patients with or without AF were recruited for our monocentric observational study. Subjects were excluded if they had a history of valvular heart disease, rheumatic heart disease, cardiomyopathy, thyroid diseases, or heart failure. The patients' histories were recorded, and laboratory examinations were conducted. Plasma ELABELA was detected by immunoassay. Echocardiographs were performed, and parameters were collected by two experienced doctors. Binary logistic regression analysis was used to identify the association between ELABELA plasma level and AF in patients with hypertension. RESULTS: Plasma ELABELA levels were lower in hypertension patients with AF than in those without AF (2.0 [1.5, 2.8] vs. 4.0 [3.4, 5.0] ng/ml, P < 0.001). ELABELA levels were correlated with age, heart rate, BNP levels and left atrial dimension. In addition to the left atrial dimension, ELABELA plasma levels were associated with AF in patients with hypertension (OR 0.081, 95% CI 0.029-0.224, P < 0.001). ELABELA levels were further decreased in the persistent AF subgroup compared with the paroxysmal AF subgroup (1.8 [1.4, 2.5] vs. 2.2 [1.8, 3.0] ng/ml, P = 0.012) and correlated with HR, BNP and ESR levels. CONCLUSIONS: ELALABELA levels were decreased in hypertension patients with AF and further lowered in the persistent AF subgroup. Decreased ELABELA plasma levels were associated with AF in hypertension patients and may be an underlying risk factor.


Assuntos
Fibrilação Atrial/sangue , Hipertensão/sangue , Hormônios Peptídicos/sangue , Fatores Etários , Idoso , Fibrilação Atrial/complicações , Estudos de Casos e Controles , Feminino , Átrios do Coração , Frequência Cardíaca , Humanos , Hipertensão/complicações , Masculino , Peptídeo Natriurético Encefálico/sangue , Análise de Regressão , Fatores de Risco
12.
J Mol Histol ; 52(5): 905-918, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34453661

RESUMO

Apoptosis, inflammation, and fibrosis contribute to vascular remodeling and injury. Elabela (ELA) serves as a crucial regulator to maintain vascular function and has been implicated in the pathogenesis of hypertensive vascular remodeling. This study aims to explore regulatory roles and underlying mechanisms of ELA in rat aortic adventitial fibroblasts (AFs) in response to angiotensin II (ATII). In cultured AFs, exposure to ATII resulted in marked decreases in mRNA and protein levels of ELA, fibroblast growth factor 21 (FGF21), and angiotensin-converting enzyme 2 (ACE2) as well as increases in apoptosis, inflammation, oxidative stress, and cellular migration, which were partially blocked by the exogenous replenishment of ELA and recombinant FGF21, respectively. Moreover, treatment with ELA strikingly reversed ATII-mediated the loss of FGF21 and ACE2 levels in rat aortic AFs. FGF21 knockdown with small interfering RNA (siRNA) significantly counterbalanced protective effects of ELA on ATII-mediated the promotion of cell migration, apoptosis, inflammatory, and oxidative injury in rat aortic AFs. More importantly, pretreatment with recombinant FGF21 strikingly inhibited ATII-mediated the loss of ACE2 and the augmentation of cell apoptosis, oxidative stress, and inflammatory injury in rat aortic AFs, which were partially prevented by the knockdown of ACE2 with siRNA. In summary, ELA exerts its anti-apoptotic, anti-inflammatory, and anti-oxidant effects in rat aortic AFs via activation of the FGF21-ACE2 signaling. ELA may represent a potential candidate to predict vascular damage and targeting the FGF21-ACE2 signaling may be a promising therapeutic intervention for vascular adventitial remodeling and related disorders.


Assuntos
Túnica Adventícia/patologia , Enzima de Conversão de Angiotensina 2/metabolismo , Aorta/patologia , Apoptose , Fatores de Crescimento de Fibroblastos/metabolismo , Fibroblastos/patologia , Inflamação/prevenção & controle , Hormônios Peptídicos/metabolismo , Angiotensina II , Animais , Movimento Celular , Masculino , Modelos Biológicos , Estresse Oxidativo , Ratos Sprague-Dawley , Transdução de Sinais
13.
Int J Cardiol ; 336: 123-129, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000358

RESUMO

BACKGROUND: Angiotensin converting enzyme 2 (ACE2) has recently been identified as the functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent response for novel coronavirus disease 2019 (COVID-19). This study aimed to explore the roles of ACE2, apelin and sodium-glucose cotransporter 2 (SGLT2) in SARS-CoV-2-mediated cardiorenal damage. METHODS AND RESULTS: The published RNA-sequencing datasets of cardiomyocytes infected with SARS-CoV-2 and COVID-19 patients were used. String, UMAP plots and single cell RNA sequencing data were analyzed to show the close relationship and distinct cardiorenal distribution patterns of ACE2, apelin and SGLT2. Intriguingly, there were decreases in ACE2 and apelin expression as well as marked increases in SGLT2 and endothelin-1 levels in SARS-CoV-2-infected cardiomyocytes, animal models with diabetes, acute kidney injury, heart failure and COVID-19 patients. These changes were linked with downregulated levels of interleukin (IL)-10, superoxide dismutase 2 and catalase as well as upregulated expression of profibrotic genes and pro-inflammatory cytokines/chemokines. Genetic ACE2 deletion resulted in upregulation of pro-inflammatory cytokines containing IL-1ß, IL-6, IL-17 and tumor necrosis factor α. More importantly, dapagliflozin strikingly alleviated cardiorenal fibrosis in diabetic db/db mice by suppressing SGLT2 levels and potentiating the apelin-ACE2 signaling. CONCLUSION: Downregulation of apelin and ACE2 and upregulation of SGLT2, endothelin-1 and pro-inflammatory cytokines contribute to SARS-CoV-2-mediated cardiorenal injury, indicating that the apelin-ACE2 signaling and SGLT2 inhibitors are potential therapeutic targets for COVID-19 patients.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2 , Animais , Apelina , Humanos , Camundongos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Transportador 2 de Glucose-Sódio
14.
J Thorac Dis ; 13(3): 1737-1745, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33841964

RESUMO

BACKGROUND: This study aims to analyze the in-hospital outcome of primary percutaneous coronary intervention (PCI) for patients with acute myocardial infarction (AMI) and prior coronary artery bypass grafting (CABG). METHODS: This was a retrospective study. From January 2011 to December 2018, the data of 78 consecutive patients (study group) with prior CABG, who received primary coronary angiography in the setting of ST-elevation myocardial infarction (STEMI) or non-ST-elevation myocardial infarction (NSTEMI), were screened. The study group was compared with another well-matched 78 patients without a history of CABG (control group). The information of the coronary angiograms and clinical data of both groups were analyzed. Multivariate conditional logistic regression models were constructed to test the association between PCI success rate and the prior CABG at age ≥65 and <65 years, respectively. RESULTS: The results revealed that the primary PCI success rate in the study group was significantly lower than in the control group (67.9% vs. 92.3%, P<0.001) and in-hospital mortality was significantly higher than in control group (11.5% vs. 2.5%, P=0.03). The multivariate logistic regression analysis indicated that the primary PCI success rate was significantly associated with the history of prior CABG both in young patients [age <65 years; odds ratio (OR) =5.26, 95% confidence interval (CI): 1.69-16.47] and elderly (age ≥65 years; OR =13.76, 95% CI: 2.72-69.75). CONCLUSIONS: The patients who receive primary PCI with AMI and prior CABG have poor in-hospital outcomes, with low PCI success rates and high mortality.

15.
Risk Manag Healthc Policy ; 14: 1233-1239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790668

RESUMO

OBJECTIVE: Patients presenting with acute myocardial infarction (AMI) with prior digestive system disease are more likely to suffer from gastrointestinal (GI) bleeding than those without these diseases. However, few articles reported how the different conditions of the digestive tract produced different risks of GI bleeding. METHODS: A single-center study on 7464 patients admitted for AMI from December 2010 to June 2019 in the Beijing Chaoyang Heart Center was retrospectively examined. Patients with major GI bleeding (n = 165) were compared with patients without (n = 7299). Univariate and multivariate logistic regression models were constructed to test the association between GI bleeding and prior diseases of the digestive tract, including gastroesophageal reflux disease, chronic gastritis, peptic ulcer, hepatic function damage, diseases of the colon and rectum, and gastroenterological tract tumors. RESULTS: Of the 7464 patients (mean age, 63.4; women, 25.6%; STEMI, 58.6%), 165 (2.2%) experienced major GI bleeding, and 1816 (24.3%) had a history of digestive system disease. The risk of GI bleeding was significantly associated with peptic ulcer (OR = 4.19, 95% CI: 1.86-9.45) and gastroenterological tumor (OR = 2.74, 95% CI: 1.07-7.04), indicated by multivariate logistic regression analysis. CONCLUSION: Preexisting peptic ulcers and gastroenterological tract tumors rather than other digestive system diseases were indicators of gastrointestinal bleeding in patients with AMI who undergo standard antithrombotic treatment during hospitalization.

16.
Rev Cardiovasc Med ; 22(1): 127-135, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33792254

RESUMO

Cardiovascular diseases (CVD), especially acute myocardial infarction, are the leading cause of death, morbidity and disability across the world, affecting millions of people each year. Atherosclerosis (AS) is the major cause of CVD, and is a chronic inflammation involving different cell types and various molecular mechanisms. Ca2+ dynamics of endothelial cells (ECs) and smooth muscle cells (SMCs) exert a significant influence on many aspects of CVD. Transient receptor potential channel 5 (TRPC5) is a member of the transient receptor potential (TRP) channels, which consists of a large number of nonselective cation channels with variable degrees of Ca2+-permeability. As a Ca2+-permeable cation channel, Human TRPC5 is expressed in a number of cell types, including ECs and muscle cells, as well as lungs and kidneys. TRPC5 is involved in renal, tumorous, neuronal and vascular diseases. In recent years, the roles of TRPC5 in CVD have been widely implicated in various disorders, such as AS, cardiac hypertrophy and blood pressure regulation. The TRPC5 mechanism of action may be associated with regulation of calcium homeostasis, oxidative stress and apoptosis. In this review, we highlight the significant roles of TRPC5 in the heart, and evaluate the potential of therapeutics targets which block TRPC5 for the treatment of CVD and related diseases.


Assuntos
Doenças Cardiovasculares , Células Endoteliais , Cálcio/metabolismo , Células Endoteliais/metabolismo , Humanos , Canais de Cátion TRPC
17.
Front Cardiovasc Med ; 8: 638468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738301

RESUMO

Background: Elabela, a novel cardiac developmental peptide, has been shown to improve heart dysfunction. However, the roles and correlation of Elabela in predicting adverse cardiac events in hypertensive patients with heart failure (HF) remain largely unclear. Objective: To measure plasma levels of Elabela in hypertensive patients with HF and evaluate its prognostic value. Methods: A single-site, cohort, prospective, observational study was investigated with all subjects, including control subjects and hypertensive patients with or without HF, whom were recruited in Beijing Chaoyang Hospital Affiliated to Capital Medical University form October 2018 to July 2019. The subjects among different groups were matched based on age and sex. The clinical characteristics were collected, and plasma Elabela levels were detected in all subjects. The hypertensive patients with HF were followed up for 180 days, and the major adverse cardiac events (MACE) were recorded. The Cox regression was used to explore the correlation between Elabela level and MACE in hypertensive patients with or without HF. The receiver operating characteristic curves were used to access the predictive power of plasma Elabela level. Results: A total of 308 subjects, including 40 control subjects, 134 hypertensive patients without HF, and 134 hypertensive patients with HF were enrolled in this study. Plasma levels of Elabela were lower in hypertensive patients compared with control subjects [4.9 (2.8, 6.7) vs. 11.8 (9.8, 14.0) ng/ml, P < 0.001]. Furthermore, HF patients with preserved ejection fraction had a higher plasma Elabela level than those with impaired left ventricular systolic function (heart failure with mid-range ejection fraction and heart failure with reduced ejection fraction). The hypertensive patients with HF and higher plasma Elabela levels had a better readmission-free and MACE-free survival than those with lower plasma Elabela levels in survival analysis. The Cox regression analysis revealed that plasma Elabela levels were negatively associated with MACE (HR 0.75, 95% CI 0.61-0.99, P = 0.048) in hypertensive patients with HF. Conclusion: Plasma Elabela levels were decreased in hypertensive patients with left ventricular systolic dysfunction. Thus, Elabela may be potentially used as a novel predictor for MACE in hypertensive patients with HF.

18.
BMC Cardiovasc Disord ; 21(1): 59, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516191

RESUMO

OBJECTIVES: To investigate the long-term outcome of patients with acute ST-segment elevation myocardial infarction (STEMI) and a chronic total occlusion (CTO) in a non-infarct-related artery (IRA) and the risk factors for mortality. METHODS: The enrolled cohort comprised 323 patients with STEMI and multivessel diseases (MVD) that received a primary percutaneous coronary intervention between January 2008 and November 2013. The patients were divided into two groups: the CTO group (n = 97) and the non-CTO group (n = 236). The long-term major adverse cardiovascular and cerebrovascular events (MACCE) experienced by each group were compared. RESULTS: The rates of all-cause mortality and MACCE were significantly higher in the CTO group than they were in the non-CTO group. Cox regression analysis showed that an age ≥ 65 years (OR = 3.94, 95% CI: 1.47-10.56, P = 0.01), a CTO in a non-IRA(OR = 5.09, 95% CI: 1.79 ~ 14.54, P < 0.01), an in-hospital Killip class ≥ 3 (OR = 4.32, 95% CI: 1.71 ~ 10.95, P < 0.01), and the presence of renal insufficiency (OR = 5.32, 95% CI: 1.49 ~ 19.01, P = 0.01), stress ulcer with gastraintestinal bleeding (SUB) (OR = 6.36, 95% CI: (1.45 ~ 28.01, P = 0.01) were significantly related the 10-year mortality of patients with STEMI and MVD; an in-hospital Killip class ≥ 3 (OR = 2.97,95% CI:1.46 ~ 6.03, P < 0.01) and the presence of renal insufficiency (OR = 5.61, 95% CI: 1.19 ~ 26.39, P = 0.03) were significantly related to the 10-year mortality of patients with STEMI and a CTO. CONCLUSIONS: The presence of a CTO in a non-IRA, an age ≥ 65 years, an in-hospital Killip class ≥ 3, and the presence of renal insufficiency, and SUB were independent risk predictors for the long-term mortality of patients with STEMI and MVD; an in-hospital Killip class ≥ 3 and renal insufficiency were independent risk predictors for the long-term mortality of patients with STEMI and a CTO.


Assuntos
Oclusão Coronária/fisiopatologia , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Fatores Etários , Idoso , Doença Crônica , Oclusão Coronária/diagnóstico por imagem , Oclusão Coronária/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Úlcera Péptica Hemorrágica/mortalidade , Intervenção Coronária Percutânea/efeitos adversos , Intervenção Coronária Percutânea/mortalidade , Insuficiência Renal/mortalidade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/mortalidade , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
19.
Front Cardiovasc Med ; 8: 784044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155600

RESUMO

Cardiovascular diseases (CVDs) are still the main cause of morbidity and mortality worldwide and include a group of disorders varying from vasculature, myocardium, arrhythmias and cardiac development. MicroRNAs (miRs) are endogenous non-coding RNAs with 18-23 nucleotides that regulate gene expression. The miR-34 family, including miR-34a/b/c, plays a vital role in the regulation of myocardial physiology and pathophysiological processes. Recently, miR-34a has been implicated in cardiovascular fibrosis, dysfunction and related cardiovascular disorders as an essential regulator. Interestingly, there is a pivotal link among miR-34a, cardiovascular fibrosis, and Smad4/TGF-ß1 signaling. Notably, both loss-of-function and gain-of-function approaches identified the critical roles of miR-34a in cardiovascular apoptosis, autophagy, inflammation, senescence and remodeling by modulating multifunctional signaling pathways. In this article, we focus on the current understanding of miR-34a in biogenesis, its biological effects and its implications for cardiac pathologies including myocardial infarction, heart failure, ischaemia reperfusion injury, cardiomyopathy, atherosclerosis, hypertension and atrial fibrillation. Thus, further understanding of the effects of miR-34a on cardiovascular diseases will aid the development of effective interventions. Targeting for miR-34a has emerged as a potential therapeutic target for cardiovascular dysfunction and related diseases.

20.
Heart Fail Rev ; 26(5): 1249-1258, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32314083

RESUMO

Heart failure (HF) is a growing epidemic with high morbidity and mortality at an international scale. The apelin-APJ receptor pathway has been implicated in HF, making it a promising therapeutic target. APJ has been shown to be activated by a novel endogenous peptide ligand known as Elabela (ELA, also called Toddler or Apela), with a critical role in cardiac development and function. Activation of the ELA-APJ receptor axis exerts a wide range of physiological effects, including depressor response, positive inotropic action, diuresis, anti-inflammatory, anti-fibrotic, and anti-remodeling, leading to its cardiovascular protection. The ELA-APJ axis is essential for diverse biological processes and has been shown to regulate fluid homeostasis, myocardial contractility, vasodilation, angiogenesis, cellular differentiation, apoptosis, oxidative stress, cardiorenal fibrosis, and dysfunction. The beneficial effects of the ELA-APJ receptor system are well-established by treating hypertension, myocardial infarction, and HF. Additionally, administration of ELA protects human embryonic stem cells against apoptosis and stress-induced cell death and promotes survival and self-renewal in an APJ-independent manner (X receptor) via the phosphatidylinositol 3-kinase/Akt pathway, which may provide a new therapeutic approach for HF. Thus, targeting the ELA-APJ axis has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of HF. An increased understanding of cardiovascular actions of ELA will help to develop effective interventions. This article gives an overview of the characteristics of the ELA-apelin-APJ axis and summarizes the current knowledge on its cardioprotective roles, potential mechanisms, and prospective application for acute and chronic HF.


Assuntos
Insuficiência Cardíaca , Hipertensão , Hormônios Peptídicos , Apelina , Receptores de Apelina , Humanos , Miocárdio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA