Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 199: 111258, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029543

RESUMO

The paper microzones method (PMZs) is a green chemical method that uses the principle of the three primary colors of red, green and blue (RGB) to detect the water quality of the droplets on white paper. However, this method is rarely used in the performance evaluation of photocatalysts. The paper details the first use of paper microzones utilized in the evaluation of photocatalyst performance. A sol-gel method was used to prepare molecularly imprinted modified TiO2 photocatalysts for the treatment of different wastewaters, and characterized the catalysts using XRD and several other methods. The reliability of PMZs on the evaluation of photocatalytic activity and selectivity was also analyzed. The following results were obtained: EP-TiO2 catalysts (EP, ethyl paraben, the imprinting molecule) with different S doping levels were synthesized using a one-step sol-gel method, and the best S doping ratio was found to be n(Ti):n(S) 3:1. S-EP-TiO2 was found to be 100% anatase and showed excellent photocatalytic performance, while the PMZs method accurately determined changes in RGB levels for the photocatalytic degradation process of pollutants using S-EP-TiO2 as the photocatalyst. A photocatalytic kinetic analysis showed the PMZs method was quite suitable for the evaluation of photocatalyst activity, but the evaluation of selectivity needs improvement. This method is a promising green chemistry way to evaluate photocatalyst performance and the rapid detection of outdoor sewage water quality.


Assuntos
Titânio , Catálise , Cinética , Reprodutibilidade dos Testes
2.
Xenobiotica ; 49(12): 1504-1515, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30865484

RESUMO

1. Safrole is a natural compound categorized as a group 2B carcinogen extracted from sassafras oil or certain other essential oils. The hepatotoxicity of safrole has always been highly concerned. So, the purpose of this study was to evaluate the role of cytochrome P450 (CYP450)-mediated reactive metabolites (RMs) formation and its induced cytotoxicity in HepaRG cells. 2. Safrole belongs to the methylenedioxyphenyl structure which could be activated to RMs. Two metabolites (M1, M2) and three new glutathione conjugates (M3-M5) of safrole ortho-oquinone RMs were found in HepaRG cells. Using human recombinant CYP450 enzymes and chemical inhibitor method, the metabolism of safrole RMs was predominantly carried out through the CYP1A2 with minor contributions by CYP2E1. 3. Induction of CYP1A2 by omeprazole (OME) enhanced safrole-induced cytotoxicity, compared with treatment with safrole alone, whereas inhibition of CYP1A2 by alpha-naphthoflavone (α-NAP) decreased the cytotoxicity. The cytotoxicity of cell induced by safrole was related to the amount of RMs formation. Besides, pretreatment with L-buthionine sulfoximine (BSO) to deplete intracellular GSH markedly enhanced safrole-induced cytotoxicity. OME induced the safrole-induced GSH exhaustion, and GSH depletion by safrole was not via oxidation of GSH and occurred prior to the increase in ROS. Furthermore, mitochondrial membrane potential (ΔΨm) could be aggravated by the inducer of CYP1A2 together with safrole. Collectively, these data suggest that the ortho-quinone RM may mediate safrole hepatotoxicity, and CYP1A2 was the core enzyme in ortho-quinone RMs-mediated safrole hepatotoxicity.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Safrol/toxicidade , Butionina Sulfoximina/farmacologia , Linhagem Celular , Citocromo P-450 CYP1A2/genética , Indutores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Inativação Metabólica , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Safrol/metabolismo , Safrol/farmacocinética
3.
Phytomedicine ; 47: 161-173, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30166101

RESUMO

BACKGROUND: Diabetic nephropathy (DN), one of the most serious complications of diabetes, is the leading cause of morbidity and mortality of end-stage renal disease. Our previous research found that carnosic acid (CA) or rosemary extract can effectively improve glucose and lipid metabolism disorder by inhibiting SREBPs. PURPOSE: In this study, we aimed to explore the therapeutic effects of CA on the DN. METHODS: The mice glomerular mesangial cells (mGMCs) were used to evaluate the anti-oxidative and anti-inflammation effects of CA under high glucose (HG) condition. Furthermore, db/db mice and streptozotocin (STZ)-induced diabetic mice were used to investigate the effects of CA against DN in vivo. RESULTS: The results showed that CA activated Nrf2, inhibited NF-κB pathway and regulated related downstream genes in mGMC under HG condition. A 14-week treatment of mice with CA reduced water uptake and urine volume, attenuated diabetes-induced albuminuria, increased urine creatinine, and subsequently improved the glomerular sclerosis and mesangial expansion in db/db mice. Similarly, a 20-week oral administration of CA improved kidney damage in STZ-induced diabetic mice. In addition, CA inhibited the expression of profibrotic factors, such as TGF-ß1, fibronectin and E-cadherin. Compared to irbesartan, CA exerted better glucose lowering effect, and in kidney, CA was more potent to reduce fibronectin and E-cadherin expression. In all the animal experiment, CA did not lead to abnormal damages to other tissues. CONCLUSION: These findings suggest that CA is a safe compound which exerts the protective effects on diabetes-induced kidney complications.


Assuntos
Abietanos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Células Mesangiais/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/antagonistas & inibidores , Animais , Proteínas Cdh1/metabolismo , Linhagem Celular , Fibronectinas/metabolismo , Glucose/metabolismo , Inflamação/metabolismo , Rim/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estreptozocina , Fator de Crescimento Transformador beta1/metabolismo
4.
Chin J Nat Med ; 15(3): 210-219, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28411689

RESUMO

The present study was designed to investigate the therapeutic effcts of Moutan Cortex (CM, root bark of Paeonia suffruticosa Andr) and Paeoniae Radix Rubra (PR, root of Paeonia veitchii Lynch) on metabolic disorders, focusing on the infuence of CM and PR on the obesity-related gut microbiota homeostasis. The diet-induced obese (DIO) mouse model was used to test the therapeutic effects of CM and PR. The mice were orally administered with CM and PR for 6 weeks, and oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were performed to evaluate the insulin sensitivity of the mice. Sterol-regulatory element binding proteins (SREBPs) and their target genes were measured by quantitative RT-PCR. High-throughput 16S ribosomal RNA (16S rRNA) gene sequencing technology was used to determine the composition of gut microbiota, and the metabolites in serum were analyzed by GC-MS. Our results indicated that CM and PR combination alleviated obese and insulin resistance in the DIO mice, leading to increased glucose uptake and gene expression in muscle and liver, and down-regulated SREBPs and their target genes in liver. Interesting, neither the CM-PR extracts, nor the major components of CM and PR did not affect SREBPs activity in cultured cells. Meanwhile, CM and PR significantly modulated the gut microbiota of the high-fat diet (HFD) treated mice, similar to metformin, and CM-PR reversed the overall microbiota composition similar to the normal chow diet (NCD) treated mice. In conclusion, our results provide novel mechanisms of action for the effects of CM and PR in treating DIO-induced dysregulation of sugar and lipid metabolism.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/microbiologia , Paeonia/química , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Homeostase/efeitos dos fármacos , Humanos , Insulina/metabolismo , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
5.
Chin J Nat Med ; 14(10): 746-756, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28236404

RESUMO

As a culinary and medicinal herb, rosemary is widely used. The present work aimed to investigate the effects of rosemary extracts on metabolic diseases and the underlying mechanisms of action. Liver cells stably expressing SREBP reporter were used to evaluate the inhibitory effects of different fractions of rosemary extracts on SREBP activity. The obese mice induced by Western-type diet were orally administered with rosemary extracts or vehicle for 7 weeks, the plasma and tissue lipids were analyzed. SREBPs and their target genes were measured by quantitative RT-PCR. We demonstrated that the petroleum ether sub-fraction of rosemary extracts (PER) exhibited the best activity in regulating lipid metabolism by inhibiting SREBPs, while water and n-BuOH sub-fraction showed the SREBPs agonist-effect. After PER treatment, there was a significant reduction of total SREBPs in liver cells. PER not only decreased SREBPs nuclear abundance, but also inhibited their activity, resulting in decreased expression of SREBP-1c and SREBP-2 target genes in vitro and in vivo. Inhibiting SREBPs by PER decreased the total triglycerides and cholesterol contents of the liver cells. In the mice fed with Western-type diet, PER treatment decreased TG, TC, ALT, glucose, and insulin in blood, and improved glucose tolerance and insulin sensitivity. Furthermore, PER treatment also decreased lipid contents in liver, brown adipose tissue, and white adipose tissue. Our results from the present study suggested that petroleum ether fraction of rosemary extracts exhibited the best potential of improving lipid metabolism by inhibiting SREBPs activity.


Assuntos
Hiperlipidemias/tratamento farmacológico , Resistência à Insulina , Petróleo/análise , Extratos Vegetais/administração & dosagem , Rosmarinus/química , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Alcanos/química , Animais , Colesterol/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA