Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
J Urol ; 212(4): 588-589, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39254127
2.
Ageing Res Rev ; 100: 102462, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39179116

RESUMO

BACKGROUND: Dance represents a promising alternative to traditional physical activity (PA), appealing due to its ease of implementation and its associated health benefits. By incorporating technology-based dance interventions into the development of PA programs, there is potential to significantly increase PA participation and improve fitness levels across diverse population groups. This systematic scoping review and meta-synthesis aimed to investigate the effectiveness of technology-based dance interventions as a means of advancing public health objectives. METHODS: A comprehensive literature review was conducted using various databases ( PubMed, Web of Science, ProQuest, MEDLINE, and SPORTDiscus) to identify pertinent publications. We specifically focused on studies evaluated the impact of technology-based dance interventions on health-related outcomes and PA levels. Methodological quality assessment was carried out using the Cochrane RoB 2 and ROBINS-I tools. Data analysis and theme identification were facilitated using NVivo 14. Additionally, this study was registered on the Open Science Framework at https://osf.io/rynce/registrations. RESULTS: A total of 3135 items identified through the literature search. Following screening, twelve items met the study's inclusion criteria, with an additional three articles located through manual searching. These 15 studies examined on three types of technology-based dance intervention: mobile health (mHealth) combination, online /telerehabilitation classes, and exergaming dance programs. The analysis included 344 participants, with mean ages ranging from 15.3 ± 1.2-73.6 ± 2.2 years. There were five population groups across the studies: middle-aged and older adults, individuals with Parkinson's disease (PD), individuals with stroke, overweight adults, and overweight adolescents. The meta-synthesis revealed three primary themes: Acceptability, Intervention effects, and Technology combinations. CONCLUSION: The advantages highlighted in this scoping review and meta-synthesis of technology-based dance interventions indicating that this type of PA could provide an effective solution to the growing issue of physical inactivity. It also presents a promising strategy for systematically improving fitness and health across populations, particularly among older individuals.


Assuntos
Dança , Promoção da Saúde , Humanos , Dançaterapia/métodos , Dança/fisiologia , Exercício Físico/fisiologia , Promoção da Saúde/métodos , Telemedicina
3.
Artigo em Inglês | MEDLINE | ID: mdl-39150808

RESUMO

Kidney stone disease is a major public health issue. By breaking stones with repeated laser irradiation, laser lithotripsy (LL) has become the main treatment for kidney stone disease. Laser-induced cavitation is closely associated with the stone damage in LL. Monitoring the cavitation activities during LL is thus crucial to optimizing the stone damage and maximizing LL efficiency. In this study, we have developed three-dimensional super-resolution passive cavitation mapping (3D-SRPCM), in which the cavitation bubble positions can be localized with an accuracy of 40 µm, which is 1/10th of the acoustic diffraction limit. Moreover, the 3D-SRPCM reconstruction speed has been improved by 300 times by adopting a GPU-based sparse-matrix beamforming approach. Using 3D-SRPCM, we studied LL-induced cavitation activities on BegoStones, both in free space of water and confined space of a kidney phantom. The dose-dependence analysis provided by 3D-SRPCM revealed that accumulated impact pressure on the stone surface has the highest correlation with the stone damage. By providing high-resolution cavitation mapping during LL treatment, we expect that 3D-SRPCM may become a powerful tool to improve the clinical LL efficiency and patient outcome.

4.
Curr Med Sci ; 44(4): 771-788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39096475

RESUMO

OBJECTIVE: The activities and products of carbohydrate metabolism are involved in key processes of cancer. However, its relationship with hepatocellular carcinoma (HCC) is unclear. METHODS: The cancer genome atlas (TCGA)-HCC and ICGC-LIRI-JP datasets were acquired via public databases. Differentially expressed genes (DEGs) between HCC and control samples in the TCGA-HCC dataset were identified and overlapped with 355 carbohydrate metabolism-related genes (CRGs) to obtain differentially expressed CRGs (DE-CRGs). Then, univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were applied to identify risk model genes, and HCC samples were divided into high/low-risk groups according to the median risk score. Next, gene set enrichment analysis (GSEA) was performed on the risk model genes. The sensitivity of the risk model to immunotherapy and chemotherapy was also explored. RESULTS: A total of 8 risk model genes, namely, G6PD, PFKFB4, ACAT1, ALDH2, ACYP1, OGDHL, ACADS, and TKTL1, were identified. Moreover, the risk score, cancer status, age, and pathologic T stage were strongly associated with the prognosis of HCC patients. Both the stromal score and immune score had significant negative/positive correlations with the risk score, reflecting the important role of the risk model in immunotherapy sensitivity. Furthermore, the stromal and immune scores had significant negative/positive correlations with risk scores, reflecting the important role of the risk model in immunotherapy sensitivity. Eventually, we found that high-/low-risk patients were more sensitive to 102 drugs, suggesting that the risk model exhibited sensitivity to chemotherapy drugs. The results of the experiments in HCC tissue samples validated the expression of the risk model genes. CONCLUSION: Through bioinformatic analysis, we constructed a carbohydrate metabolism-related risk model for HCC, contributing to the prognosis prediction and treatment of HCC patients.


Assuntos
Metabolismo dos Carboidratos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Humanos , Prognóstico , Metabolismo dos Carboidratos/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Perfilação da Expressão Gênica
5.
Acta Biomater ; 180: 423-435, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641183

RESUMO

Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (TEM) cells and PD-1 inhibitors (aPD-1). The biomimetic lymph nodes facilitate the delivery of TEM cells and aPD-1 to the TdLN and the tumor immune microenvironment, thus realizing effective and sustained anti-tumor immunotherapy. Exploiting their unique gel-forming and degradation properties, the cold tumors were speedily transformed into hot tumors via TEM cell supplementation. Meanwhile, the efficacy of aPD-1 was markedly elevated compared with conventional drug delivery methods. Our finding suggested that the development of F127@TEM@aPD-1 holds promising potential as a future novel clinical drug delivery technique. STATEMENT OF SIGNIFICANCE: F127@TEM@aPD-1 show unique advantages in cancer treatment. When injected subcutaneously, F127@TEM@aPD-1 can continuously supplement TEM cells and aPD-1 to tumor draining lymph nodes (TdLN) and the tumor microenvironment, not only improving the efficacy of ICB therapy through slow release, but also exhibiting dual regulatory effects on the tumor and TdLN.


Assuntos
Preparações de Ação Retardada , Hidrogéis , Linfonodos , Células T de Memória , Receptor de Morte Celular Programada 1 , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Linfonodos/imunologia , Camundongos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Células T de Memória/efeitos dos fármacos , Células T de Memória/imunologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/farmacocinética , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Feminino , Camundongos Endogâmicos C57BL , Humanos
6.
iScience ; 27(2): 108999, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362265

RESUMO

Exercise, an intervention with wide-ranging effects on the whole body, has been shown to delay aging. Due to aging and exercise as modulator of metabolism, a picture of how exercise delayed D-galactose (D-gal)-induced aging in a time-resolved manner was presented in this paper. The mapping of molecular changes in response to exercise has become increasingly accessible with the development of omics techniques. To explore the dynamic changes during exercise, the serum of rats and D-gal-induced aging rats before, during, and after exercise was analyzed by untargeted metabolomics. The variation of metabolites was monitored to reveal the specific response to D-gal-induced senescence and exercise in multiple pathways, especially the basal amino acid metabolism, including glycine serine and threonine metabolism, cysteine and methionine metabolism, and tryptophan metabolism. The homeostasis was disturbed by D-gal and maintained by exercise. The paper was expected to provide a theoretical basis for the study of anti-aging exercise.

7.
J Environ Sci (China) ; 140: 279-291, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331508

RESUMO

Methane is one of the major greenhouse gases (GHGs) and agriculture is recognized as its primary emitter. Methane accounting is a prerequisite for developing effective agriculture mitigation strategies. In this review, methane accounting methods and research status for various agricultural emission source including rice fields, animal enteric fermentation and livestock and poultry manure management were overview, and the influencing factors of each emission source were analyzed and discussed. At the same time, it analyzes the different research efforts involving agricultural methane accounting and makes recommendations based on the actual situation. Finally, mitigation strategies based on accounting results and actual situation are proposed. This review aims to provide basic data and reference for agriculture-oriented countries and regions to actively participate in climate action and carry out effective methane emission mitigation.


Assuntos
Gases de Efeito Estufa , Metano , Animais , Agricultura/métodos , Metano/análise , Óxido Nitroso/análise , Aves Domésticas , Gado
8.
BJU Int ; 133(2): 223-230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37942684

RESUMO

OBJECTIVES: To explore the optimal laser settings and treatment strategies for thulium fibre laser (TFL) lithotripsy, namely, those with the highest treatment efficiency, lowest thermal injury risk, and shortest procedure time. MATERIALS AND METHODS: An in vitro kidney model was used to assess the efficacy of TFL lithotripsy in the upper calyx. Stone ablation experiments were performed on BegoStone phantoms at different combinations of pulse energy (EP ) and frequency (F) to determine the optimal settings. Temperature changes and thermal injury risks were monitored using embedded thermocouples. Experiments were also performed on calcium oxalate monohydrate (COM) stones to validate the optimal settings. RESULTS: High EP /low F settings demonstrated superior treatment efficiency compared to low EP /high F settings using the same power. Specifically, 0.8 J/12 Hz was the optimal setting, resulting in a twofold increase in treatment efficiency, a 39% reduction in energy expenditure per unit of ablated stone mass, a 35% reduction in residual fragments, and a 36% reduction in total procedure time compared to the 0.2 J/50 Hz setting for COM stones. Thermal injury risk assessment indicated that 10 W power settings with high EP /low F combinations remained below the threshold for tissue injury, while higher power settings (>10 W) consistently exceeded the safety threshold. CONCLUSIONS: Our findings suggest that high EP /low F settings, such as 0.8 J/12 Hz, are optimal for TFL lithotripsy in the treatment of COM stones. These settings demonstrated significantly improved treatment efficiency with reduced residual fragments compared to conventional settings while keeping the thermal dose below the injury threshold. This study highlights the importance of using the high EP /low F combination with low power settings, which maximizes treatment efficiency and minimizes potential thermal injury. Further studies are warranted to determine the optimal settings for TFL for treating kidney stones with different compositions.


Assuntos
Cálculos Renais , Lasers de Estado Sólido , Litotripsia a Laser , Humanos , Túlio , Litotripsia a Laser/efeitos adversos , Litotripsia a Laser/métodos , Lasers de Estado Sólido/uso terapêutico , Cálculos Renais/terapia , Rim
9.
Mil Med Res ; 10(1): 52, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37941075

RESUMO

Advances in chimeric antigen receptor (CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies. However, progress is still hindered as clinical benefit is only available for a fraction of patients. A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice. Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design, guide gene-based T cell modification, and optimize the CAR-T manufacturing conditions, and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes. The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities. In this review, we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies. We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy. Specifically, we provide an overview of single-cell studies focusing on target antigens, CAR-transgene integration, and preclinical research and clinical applications, and then discuss how it will affect the future of CAR-T cell therapy.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos de Linfócitos T/genética , Neoplasias/terapia , Imunoterapia , Linfócitos T , Análise de Célula Única
10.
Urolithiasis ; 51(1): 124, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917225

RESUMO

To investigate stone ablation characteristics of thulium fiber laser (TFL), BegoStone phantoms were spot-treated in water at various fiber tip-to-stone standoff distances (SDs, 0.5 ~ 2 mm) over a broad range of pulse energy (Ep, 0.2 ~ 2 J), frequency (F, 5 ~ 150 Hz), and power (P, 10 ~ 30 W) settings. In general, the ablation speed (mm3/s) in BegoStone decreased with SD and increased with Ep, reaching a peak around 0.8 ~ 1.0 J. Additional experiments with calcium phosphate (CaP), uric acid (UA), and calcium oxalate monohydrate (COM) stones were conducted under two distinctly different settings: 0.2 J/100 Hz and 0.8 J/12 Hz. The concomitant bubble dynamics, spark generation and pressure transients were analyzed. Higher ablation speeds were consistently produced at 0.8 J/12 Hz than at 0.2 J/100 Hz, with CaP stones most difficult yet COM and UA stones easier to ablate. Charring was mostly observed in CaP stones at 0.2 J/100 Hz, accompanied by strong spark-generation, explosive combustion, and diminished pressure transients, but not at 0.8 J/12 Hz. By treating stones in parallel fiber orientation and leveraging the proximity effect of a ureteroscope, the contribution of bubble collapse to stone ablation was found to be substantial (16% ~ 59%) at 0.8 J/12 Hz, but not at 0.2 J/100 Hz. Overall, TFL ablation efficiency is significantly better at high Ep/low F setting, attributable to increased cavitation damage with less char formation.


Assuntos
Terapia a Laser , Lasers de Estado Sólido , Litotripsia a Laser , Cálculos Urinários , Humanos , Cálculos Urinários/cirurgia , Túlio , Litotripsia a Laser/efeitos adversos , Oxalato de Cálcio
11.
Int J Hyperthermia ; 40(1): 2263672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37806666

RESUMO

Mechanical high-intensity focused ultrasound (M-HIFU), which includes histotripsy, is a non-ionizing, non-thermal ablation technology that can be delivered by noninvasive methods. Because acoustic cavitation is the primary mechanism of tissue disruption, histotripsy is distinct from the conventional HIFU techniques resulting in hyperthermia and thermal injury. Phase I human trials have shown the initial safety and efficacy of histotripsy in treating patients with malignant liver tumors. In addition to tissue ablation, a promising benefit of M-HIFU has been stimulating a local and systemic antitumor immune response in preclinical models and potentially in the Phase I trial. Preclinical studies combining systemic immune therapies appear promising, but clinical studies of combinations have been complicated by systemic toxicities. Consequently, combining M-HIFU with systemic immunotherapy has been demonstrated in preclinical models and may be testing in future clinical studies. An additional alternative is to combine intratumoral M-HIFU and immunotherapy using microcatheter-placed devices to deliver both M-HIFU and immunotherapy intratumorally. The promise of M-HIFU as a component of anti-cancer therapy is promising, but as forms of HIFU are tested in preclinical and clinical studies, investigators should report not only the parameters of the energy delivered but also details of the preclinical models to enable analysis of the immune responses. Ultimately, as clinical trials continue, clinical responses and immune analysis of patients undergoing M-HIFU including forms of histotripsy will provide opportunities to optimize clinical responses and to optimize application and scheduling of M-HIFU in the context of the multi-modality care of the cancer patient.


Assuntos
Carcinoma Hepatocelular , Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias Hepáticas , Humanos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imunoterapia
12.
Ultrason Sonochem ; 101: 106649, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866136

RESUMO

Holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripsy (LL) has been the treatment of choice for kidney stone disease for more than two decades, yet the mechanisms of action are not completely clear. Besides photothermal ablation, recent evidence suggests that cavitation bubble collapse is pivotal in kidney stone dusting when the Ho:YAG laser operates at low pulse energy (Ep) and high frequency (F). In this work, we perform a comprehensive series of experiments and model-based simulations to dissect the complex physical processes in LL. Under clinically relevant dusting settings (Ep = 0.2 J, F = 20 Hz), our results suggest that majority of the irradiated laser energy (>90 %) is dissipated by heat generation in the fluid surrounding the fiber tip and the irradiated stone surface, while only about 1 % may be consumed for photothermal ablation, and less than 0.7 % is converted into the potential energy at the maximum bubble expansion. We reveal that photothermal ablation is confined locally to the laser irradiation spot, whereas cavitation erosion is most pronounced at a fiber tip-stone surface distance about 0.5 mm where multi foci ring-like damage outside the thermal ablation zone is observed. The cavitation erosion is caused by the progressively intensified collapse of jet-induced toroidal bubble near the stone surface (<100 µm), as a result of Raleigh-Taylor and Richtmyer-Meshkov instabilities. The ensuing shock wave-stone interaction and resultant leaky Rayleigh waves on the stone surface may lead to dynamic fatigue and superficial material removal under repeated bombardments of toroidal bubble collapses during dusting procedures in LL.


Assuntos
Cálculos Renais , Lasers de Estado Sólido , Litotripsia a Laser , Humanos , Litotripsia a Laser/métodos , Hólmio , Lasers de Estado Sólido/uso terapêutico , Cálculos Renais/terapia
13.
Front Neurosci ; 17: 1227081, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547140

RESUMO

Background: There is increasing evidence that patients with retinal detachment (RD) have aberrant brain activity. However, neuroimaging investigations remain focused on static changes in brain activity among RD patients. There is limited knowledge regarding the characteristics of dynamic brain activity in RD patients. Aim: This study evaluated changes in dynamic brain activity among RD patients, using a dynamic amplitude of low-frequency fluctuation (dALFF), k-means clustering method and support vector machine (SVM) classification approach. Methods: We investigated inter-group disparities of dALFF indices under three different time window sizes using resting-state functional magnetic resonance imaging (rs-fMRI) data from 23 RD patients and 24 demographically matched healthy controls (HCs). The k-means clustering method was performed to analyze specific dALFF states and related temporal properties. Additionally, we selected altered dALFF values under three distinct conditions as classification features for distinguishing RD patients from HCs using an SVM classifier. Results: RD patients exhibited dynamic changes in local intrinsic indicators of brain activity. Compared with HCs, RD patients displayed increased dALFF in the bilateral middle frontal gyrus, left putamen (Putamen_L), left superior occipital gyrus (Occipital_Sup_L), left middle occipital gyrus (Occipital_Mid_L), right calcarine (Calcarine_R), right middle temporal gyrus (Temporal_Mid_R), and right inferior frontal gyrus (Frontal_Inf_Tri_R). Additionally, RD patients showed significantly decreased dALFF values in the right superior parietal gyrus (Parietal_Sup_R) and right paracentral lobule (Paracentral_Lobule_R) [two-tailed, voxel-level p < 0.05, Gaussian random field (GRF) correction, cluster-level p < 0.05]. For dALFF, we derived 3 or 4 states of ALFF that occurred repeatedly. There were differences in state distribution and state properties between RD and HC groups. The number of transitions between the dALFF states was higher in the RD group than in the HC group. Based on dALFF values in various brain regions, the overall accuracies of SVM classification were 97.87, 100, and 93.62% under three different time windows; area under the curve values were 0.99, 1.00, and 0.95, respectively. No correlation was found between hamilton anxiety (HAMA) scores and regional dALFF. Conclusion: Our findings offer important insights concerning the neuropathology that underlies RD and provide robust evidence that dALFF, a local indicator of brain activity, may be useful for clinical diagnosis.

14.
J Endourol ; 37(8): 914-920, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37300481

RESUMO

Objective: Low energy and high frequency settings are used in stone dusting for holmium lasers. Such settings may not be optimal for thulium fiber laser (TFL). With the seemingly endless combination of settings, we aim to provide guidance to the practicing urologists and assess the efficiency of the TFL platform in an automated in vitro "dusting model." Materials/Methods: Three experimental setups were designed to investigate stone dusting produced by an IPG Photonics TLR-50 W TFL system using 200 µm fiber and soft BegoStone phantoms. The most popular 10 and 20 W dusting settings among endourologist familiar with TFL were evaluated. We directly compared short pulse (SP) vs long pulse (LP) mode using various combinations of pulse energy (Ep) and pulse frequency (F). Thereafter, we tested the 10 and 20 W settings and compared them among each other to elucidate the most efficient settings at each power. Treatments were performed under the same total laser energy delivered to the stone at four different standoff distances (SDs) with a clinically relevant scanning speed of either 1 or 2 mm/sec. Ablation volumes were quantified by optical coherence tomography to assess stone dusting efficiency. Fragment size after ablation at different pulse energies was evaluated by sieving and evaluating under a microscope after treatment. Results: Overall, SP provided greater ablation volume when compared with LP. Our dusting efficiency model demonstrated that the maximum stone ablation was achieved at the combination of high energy/low frequency settings (p < 0.005) and at a SD of 0.2 mm. At all tested pulse energies, no stone phantoms were broken into fragments >1 mm. Conclusions: During stone dusting with TFL, SP offers superior ablation to LP settings. Optimal dusting at clinically relevant scanning speeds of 1 and 2 mm/sec occurs at high energy/low frequency settings. Thulium lithotripsy with high Ep does not result in increased fragment size.


Assuntos
Cálculos Renais , Lasers de Estado Sólido , Litotripsia a Laser , Cálculos Urinários , Humanos , Litotripsia a Laser/métodos , Túlio/uso terapêutico , Cálculos Urinários/cirurgia , Cálculos Renais/terapia , Lasers de Estado Sólido/uso terapêutico , Hólmio
15.
Int J Heat Mass Transf ; 2042023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909718

RESUMO

A model of thermal ablation with application to multi-pulsed laser lithotripsy is presented. The approach is based on a one-sided Stefan-Signorini model for thermal ablation, and relies on a level-set function to represent the moving interface between the solid phase and a fictitious gas phase (representing the ablated material). The model is discretized with an embedded finite element method, wherein the interface geometry can be arbitrarily located relative to the background mesh. Nitsche's method is adopted to impose the Signorini condition on the moving interface. A bound constraint is also imposed to deal with thermal shocks that can arise during representative simulations of pulsed ablation with high-power lasers. We report simulation results based on experiments for pulsed laser ablation of wet BegoStone samples treated in air, where Begostone has been used as a phantom material for kidney stone. The model is calibrated against experimental measurements by adjusting the percentage of incoming laser energy absorbed at the surface of the stone sample. Simulation results are then validated against experimental observations for the crater area, volume, and geometry as a function of laser pulse energy and duration. Our studies illustrate how the spreading of the laser beam from the laser fiber tip with concomitantly reduced incident laser irradiance on the damaged crater surface explains trends in both the experimental observations and the model-based simulation results.

17.
Phys Fluids (1994) ; 35(3): 033303, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36896246

RESUMO

Recent studies indicate that cavitation may play a vital role in laser lithotripsy. However, the underlying bubble dynamics and associated damage mechanisms are largely unknown. In this study, we use ultra-high-speed shadowgraph imaging, hydrophone measurements, three-dimensional passive cavitation mapping (3D-PCM), and phantom test to investigate the transient dynamics of vapor bubbles induced by a holmium:yttrium aluminum garnet laser and their correlation with solid damage. We vary the standoff distance (SD) between the fiber tip and solid boundary under parallel fiber alignment and observe several distinctive features in bubble dynamics. First, long pulsed laser irradiation and solid boundary interaction create an elongated "pear-shaped" bubble that collapses asymmetrically and forms multiple jets in sequence. Second, unlike nanosecond laser-induced cavitation bubbles, jet impact on solid boundary generates negligible pressure transients and causes no direct damage. A non-circular toroidal bubble forms, particularly following the primary and secondary bubble collapses at SD = 1.0 and 3.0 mm, respectively. We observe three intensified bubble collapses with strong shock wave emissions: the intensified bubble collapse by shock wave, the ensuing reflected shock wave from the solid boundary, and self-intensified collapse of an inverted "triangle-shaped" or "horseshoe-shaped" bubble. Third, high-speed shadowgraph imaging and 3D-PCM confirm that the shock origins from the distinctive bubble collapse form either two discrete spots or a "smiling-face" shape. The spatial collapse pattern is consistent with the similar BegoStone surface damage, suggesting that the shockwave emissions during the intensified asymmetric collapse of the pear-shaped bubble are decisive for the solid damage.

18.
Cancer Epidemiol Biomarkers Prev ; 32(5): 726-738, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857775

RESUMO

BACKGROUND: Early diagnosis is critical to lung adenocarcinoma patients' survival but faces inadequacies in convenient early detection. METHODS: We applied a comprehensive microarray of 130,000 peptides to detect "autoantibody signature" that is autoantibodies binding to mimotopes for early detection of stage 0-I LUAD. Plasma samples were collected from 147 early-stage lung adenocarcinoma (Early-LUAD), 108 benign lung disease (BLD), and 122 normal healthy controls (NHC). Clinical characteristics, low-dose CT (LDCT), and laboratory tests were incorporated into correlation analysis. RESULTS: We identified 143 and 133 autoantibody signatures, distinguishing Early-LUAD from NHC/BLD in the discovery cohort. Autoantibody signatures significantly correlated with age, stage, tumor size, basophil count, and IgM level (P < 0.05). The random forest models based on differential autoantibody signatures displayed AUC of 0.92 and 0.87 to discern Early-LUAD from NHC/BLD in the validation cohort, respectively. Compared with LDCT, combining autoantibody signature and LDCT improved the positive predictive value from 50% to 78.33% (P = 0.049). In addition, autoantibody signatures displayed higher sensitivity of 72.4% to 81.0% compared with the combinational tumor markers (cyfra21.1, NSE, SCC, ProGRP) with a sensitivity of 22.4% (P = 0.000). Proteins matched by differential peptides were enriched in cancer-related PI3K/Akt, MAPK, and Wnt pathways. Overlaps between matched epitopes and autoantibody signatures illustrated the underlying engagement of autoantibodies in immune recognition. CONCLUSIONS: Collectively, autoantibody signatures identified by a high-throughput peptide microarray have the potential to detect Early-LUAD, which could assist LDCT to better diagnose Early-LUAD. IMPACT: Novel sensitive autoantibody signatures can adjuvant LDCT to better diagnose LUAD at very early stage.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Autoanticorpos , Fosfatidilinositol 3-Quinases , Detecção Precoce de Câncer , Adenocarcinoma de Pulmão/diagnóstico , Peptídeos
19.
Front Neurosci ; 17: 1126262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816124

RESUMO

Aim: This study was conducted to explore differences in static functional connectivity (sFC) and dynamic functional connectivity (dFC) alteration patterns in the primary visual area (V1) among high myopia (HM) patients and healthy controls (HCs) via seed-based functional connectivity (FC) analysis. Methods: Resting-state functional magnetic resonance imaging (fMRI) scans were performed on 82 HM patients and 59 HCs who were closely matched for age, sex, and weight. Seed-based FC analysis was performed to identify alterations in the sFC and dFC patterns of the V1 in HM patients and HCs. Associations between mean sFC and dFC signal values and clinical symptoms in distinct brain areas among HM patients were identified via correlation analysis. Static and dynamic changes in brain activity in HM patients were investigated by assessments of sFC and dFC via calculation of the total time series mean and sliding-window analysis. Results: In the left anterior cingulate gyrus (L-ACG)/left superior parietal gyrus (L-SPG) and left V1, sFC values were significantly greater in HM patients than in HCs. In the L-ACG and right V1, sFC values were also significantly greater in HM patients than in HCs [two-tailed, voxel-level P < 0.01, Gaussian random field (GRF) correction, cluster-level P < 0.05]. In the left calcarine cortex (L-CAL) and left V1, dFC values were significantly lower in HM patients than in HCs. In the right lingual gyrus (R-LING) and right V1, dFC values were also significantly lower in HM patients than in HCs (two-tailed, voxel-level P < 0.01, GRF correction, cluster-level P < 0.05). Conclusion: Patients with HM exhibited significantly disturbed FC between the V1 and various brain regions, including L-ACG, L-SPG, L-CAL, and R-LING. This disturbance suggests that patients with HM could exhibit impaired cognitive and emotional processing functions, top-down control of visual attention, and visual information processing functions. HM patients and HCs could be distinguished from each other with high accuracy using sFC and dFC variabilities. These findings may help to identify the neural mechanism of decreased visual performance in HM patients.

20.
Ultrasound Med Biol ; 49(5): 1153-1163, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764884

RESUMO

OBJECTIVE: The ultrasound-mediated blood-brain barrier (BBB) opening with microbubbles has been widely employed, while recent studies also indicate the possibility that ultrasound alone can open the BBB through a direct mechanical effect. However, the exact mechanisms through which ultrasound interacts with the BBB and whether it can directly trigger intracellular signaling and a permeability change in the BBB endothelium remain unclear. METHODS: Vertically deployed surface acoustic waves (VD-SAWs) were applied on a human cerebral microvascular endothelial cell line (hCMEC/D3) monolayer using a 33-MHz interdigital transducer that exerts shear stress-predominant stimulation. The intracellular calcium response was measured by fluorescence imaging, and the permeability of the hCMEC/D3 monolayer was assessed by transendothelial electrical resistance (TEER). DISCUSSION: At a certain intensity threshold, VD-SAWs induced an intracellular calcium surge that propagated to adjacent cells as intercellular calcium waves. VD-SAWs induced a TEER decrease in a pulse repetition frequency-dependent manner, thereby suggesting possible involvement of the mechanosensitive ion channels. CONCLUSION: The unique VD-SAW system enables more physiological mechanical stimulation of the endothelium monolayer. Moreover, it can be easily combined with other measurement devices, providing a useful platform for further mechanistic studies on ultrasound-mediated BBB opening.


Assuntos
Cálcio , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Barreira Hematoencefálica/metabolismo , Endotélio , Som , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA