Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913155

RESUMO

Membrane-based gas separation, characterized by a small footprint, low energy consumption and no pollution, has gained widespread attention as an environmentally friendly alternative to traditional gas separation. Metal-organic-frameworks (MOFs) are considered to be one of the most promising membrane-based gas separation materials because of their large specific surface area and high porosity. One of the hottest studies at the moment is how to utilize the characteristics of MOFs to prepare higher performance gas separation membranes. This paper provides a review of gas separation membranes used in recent years. Firstly, the synthesis methods of MOFs and MOF membranes are briefly introduced. Then, methods to improve the membrane properties of MOFs are described in detail, and include applications of lamellar MOFs, ionic liquid (IL) spin coating, functionalization of MOFs, defect engineering and mixed fillers. In addition, the challenges of MOF-based gas separation membranes are presented, including pore size, environmental disturbances, plasticization, interfacial compatibility, and so on. Finally, based on the current development status of the MOF membranes, the development prospects of MOF gas separation membranes are discussed. It is hoped to provide reliable and complete ideas for researchers to prepare high-performance gas separation membranes in the future.

2.
Chem Commun (Camb) ; 59(73): 10883-10911, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37622731

RESUMO

In recent years, with the development of industrial technology and the increase of people's environmental awareness, the research on sustainable materials and their applications has become a hot topic. Among two-dimensional (2D) materials that have been selected for sustainable research, graphitic phase carbon nitride (g-C3N4) has become a hot research topic because of its many outstanding advantages such as simple preparation, good electrochemical properties, excellent photochemical properties, and better thermal stability. Nevertheless, the inherent limitations of g-C3N4 due to its relatively poor specific surface area, rapid charge recombination, limited light absorption range, and inferior dispersion in aqueous and organic media have limited its practical application. In the review, we summarize and analyze the unique structure of the 2D microporous nanomaterial g-C3N4, its synthesis method, chemical modification method, and the latest application examples in various fields in recent years, highlighting its advantages and shortcomings, with a view to providing ideas for overcoming the difficulties in its application. Furthermore, the pressing challenges faced by g-C3N4 are briefly discussed, as well as an outlook on the application prospects of g-C3N4 materials. It is expected that the review in this paper will provide more theoretical strategies for the future practical application of g-C3N4-based materials, as well as contributing to nanomaterials in sustainable applications.

3.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175376

RESUMO

Intracellular tau accumulation is a hallmark pathology of Alzheimer's disease (AD) and other tauopathies. Tau protein, in the hyperphosphorylated form, is the component of paired helical filaments (PHFs) and neurofibrillary tangles (NFTs) in AD. Blocking tau aggregation and/or phosphorylation is currently a promising strategy for AD treatment. Here, we elucidate that quercetagitrin, a natural compound derived from African marigold (Tagetes erecta), could inhibit tau aggregation and reduce tau phosphorylation at multiple disease-related sites in vitro. Moreover, the in vivo effect of quercetagitrin was assessed in P301S-tau transgenic via oral administration. The compound treatment restored the cognitive deficits and neuron loss in the mice. The formation of NFTs and tau phosphorylations in the hippocampus and cortex of the mice was also prevented by the compound. Moreover, quercetagitrin feeding displayed neuroinflammation protection through the inhibition of NF-κB activation in the mice. Together, our data reveal that quercetagitrin possesses the potential to further develop as a therapeutic medicine for AD and other tauopathies.


Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Proteínas tau/genética , Proteínas tau/metabolismo , Camundongos Transgênicos , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Tauopatias/metabolismo , Cognição , Modelos Animais de Doenças , Fosforilação
4.
Mol Neurobiol ; 59(10): 6141-6157, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35871708

RESUMO

Class IIa histone deacetylases (HDAC) have been shown to drive innate immune cell-mediated inflammation in the peripheral system, but their roles in cerebral inflammatory responses remain largely unknown. Here, we elucidate that HDAC7 is selectively elevated in lipopolysaccharide (LPS)-challenged astrocytes both in vivo and in vitro. We identify that HDAC7 binds to the inhibitory kappa B kinase (IKK) to promote IKKα and IKKß deacetylation and subsequent activation, leading to the activation of nuclear factor κB (NF-κB). Astrocyte-specific overexpression of HDAC7 results in NF-κB activation, pro-inflammatory gene upregulation and anxiety-like behaviors in mice, while downregulating HDAC7 reserves LPS-induced NF-κB activation and inflammatory responses. Furthermore, pharmacological inhibition of HDAC7 by a class IIa HDAC inhibitor attenuates LPS-induced NF-κB activation, inflammatory responses and anxiety-like behaviors both in vivo and in vitro. Together, our data reveal a novel mechanism of HDAC7 in astrocyte-mediated inflammation and suggest that targeting HDAC7 could be a potential therapeutic strategy for the treatment of anxiety and other inflammation-related diseases.


Assuntos
Astrócitos , Histona Desacetilases , NF-kappa B , Animais , Astrócitos/metabolismo , Linhagem Celular , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo
5.
Int J Biol Macromol ; 178: 381-393, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662414

RESUMO

Alzheimer's disease is a neurodegenerative disease which severely impacts the health of the elderly. Current treatments are only able to alleviate symptoms, but not prevent or cure the disease. The neurofibrillary tangles formed by tau protein aggregation are one of the defining characteristics of Alzheimer's disease, so tau protein has become a key target for the drug design. In this study, we show that fisetin, a plant-derived polyphenol compound, can inhibit aggregation of the tau fragment, K18, and can disaggregate tau K18 filaments in vitro. Meanwhile it is able to prevent the formation of tau aggregates in cells. Both experimental and computational studies indicate that fisetin could directly interact with tau K18 protein. The binding is mainly created by hydrogen bond and van der Waal force, prevents the formation of ß-strands at the two hexapeptide motifs, and does not perturb the secondary structure or the tubulin binding ability of tau protein. In summary, fisetin might be a candidate for further development as a potential preventive or therapeutic drug for Alzheimer's disease.


Assuntos
Flavonóis/química , Agregados Proteicos/efeitos dos fármacos , Proteínas tau/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Motivos de Aminoácidos , Flavonóis/farmacologia , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA