Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 631
Filtrar
1.
Nat Prod Res ; : 1-7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742433

RESUMO

Two new bicyclic sesquiterpenes,Δ9-2, 5, 11-trihydroxyl-ß-cis-bergamotene (3) and Nigrohydroin A (4), together with ten known compounds (1, 2 and 5-12) were obtained from endophytic fungus Nigrospora sp. E121. The structures were elucidated on the basis of their 1D and 2D NMR spectra and mass spectrometric data. The possible biosynthetic pathway of compounds 1, 2, 3 and 4 in Nigrospora sp. E121were reported according to literature. The phytotoxic assay results indicated that the acetyl fragment in α-acetylorcinol may contribute to the phytotoxic activity of this compound.

2.
BMC Genomics ; 25(1): 480, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750582

RESUMO

Hu sheep (HS), a breed of sheep carrying the FecB mutation gene, is known for its "year-round estrus and multiple births" and is an ideal model for studying the high fecundity mechanisms of livestock. Through analyzing and comparing the genomic selection features of Hu sheep and other sheep breeds, we identified a series of candidate genes that may play a role in Hu sheep's high fecundity mechanisms. In this study, we conducted whole-genome resequencing on six breeds and screened key mutations significantly correlated with high reproductive traits in sheep. Notably, the CC2D1B gene was selected by the fixation index (FST) and the cross-population composite likelihood ratio (XP-CLR) methods in HS and other five breeds. It was worth noting that the CC2D1B gene in HS was different from that in other sheep breeds, and seven missense mutations have been identified. Furthermore, the linkage disequilibrium (LD) analysis revealed a strong linkage disequilibrium in this specific gene region. Subsequently, by performing different grouping based on FecB genotypes in Hu sheep, genome-wide selective signal analysis screened several genes related to reproduction, such as BMPR1B and PPM1K. Besides, FST analysis identified functional genes related to reproductive traits, including RHEB, HSPA2, PPP1CC, HVCN1, and CCDC63. Additionally, a missense mutation was found in the CCDC63 gene and the haplotype was different between the high reproduction (HR) group and low reproduction (LR) group in HS. In summary, we discovered genetic differentiation among six distinct breeding sheep breeds at the whole genome level. Additionally, we identified a set of genes which were associated with reproductive performance in Hu sheep and visualized how these genes differed in different breeds. These findings laid a theoretical foundation for understanding genetic mechanisms behind high prolific traits in sheep.


Assuntos
Tamanho da Ninhada de Vivíparos , Sequenciamento Completo do Genoma , Animais , Tamanho da Ninhada de Vivíparos/genética , Ovinos/genética , Seleção Genética , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Cruzamento , Feminino , Fertilidade/genética , Reprodução/genética
3.
Cancer Lett ; 593: 216930, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705566

RESUMO

Radiotherapy (RT) in non-small cell lung cancer (NSCLC) triggers cellular senescence, complicating tumor microenvironments and affecting treatment outcomes. This study examines the role of lymphocyte immunoglobulin-like receptor B2 (LILRB2) in modulating RT-induced senescence and radiosensitivity in NSCLC. Through methodologies including irradiation, lentivirus transfection, and various molecular assays, we assessed LILRB2's expression and its impact on cellular senescence levels and tumor cell behaviors. Our findings reveal that RT upregulates LILRB2, facilitating senescence and a senescence-associated secretory phenotype (SASP), which in turn enhances tumor proliferation and resistance to radiation. Importantly, LILRB2 silencing attenuates these effects by inhibiting the JAK2/STAT3 pathway, significantly increasing radiosensitivity in NSCLC models. Clinical data correlate high LILRB2 expression with reduced RT response and poorer prognosis, suggesting LILRB2's pivotal role in RT-induced senescence and its potential as a therapeutic target to improve NSCLC radiosensitivity.

4.
Front Plant Sci ; 15: 1386109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708391

RESUMO

Compared to conventional irrigation and fertilization, the Water-fertilizer coupling can significantly enhance the efficiency of water and fertilizer utilization, thereby promoting crop growth and increasing yield. Targeting the challenges of poor crop growth, low yield, and inefficient water and fertilizer utilization in the arid region of northwest China under conventional irrigation and fertilization practices. Therefore, a two-year on-farm experiment in 2022 and 2023 was conducted to study the effects of water-fertilizer coupling regulation on pumpkin growth, yield, water consumption (ET), and water and fertilizer use efficiency. Simultaneously the comprehensive evaluation of multiple objectives was carried out using principal component analysis (PCA) methods, so as to propose an suitable water-fertilizer coupling regulation scheme for the region. The experiment was set up as a two-factor trial using water-fertilizer integration technology under three irrigation volume (W1 = 37.5 mm, W2 = 45.5 mm, W3 = 52.5mm) and three organic fertilizer application amounts (F1 = 3900-300 kg ha-1, F2 = 4800-450 kg·ha-1, F3 = 5700-600 kg·ha-1), with the traditional irrigation and fertilization scheme from local farmers as control treatments (CK). The results indicated that irrigation volume and organic fertilizer application significantly affected pumpkin growth, yield, and water and fertilizer use efficiency (P<0.05). Pumpkin yield increased with increasing irrigation volume. Increasing organic fertilizer levels within a certain range benefited pumpkin plant growth, dry matter accumulation, and yield, however, excessive application beyond a certain level had inhibited effects on those. The increased fertilizer application under the same irrigation volume enhanced the efficiency of water and fertilizer utilization. However excessive irrigation only resulted in inefficient water consumption, reducing the water and fertilizer use efficiency. The Comprehensive evaluation by PCA revealed that the F2W3 treatment outperformed all the others, effectively addressing the triple objectives of increasing production, improving efficiency, and promoting green production. Therefore, F2W3 (Irrigation volume: 52.5 mm; Fertilizer application amounts: 4800-450 kg/ha-1) as a water and fertilizer management scheme for efficient pumpkin production in the arid region of northwest China.

5.
Discov Oncol ; 15(1): 164, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744743

RESUMO

BACKGROUND: Interventional therapy, in conjunction with tyrosine kinase inhibitors (TKIs), has shown promising outcomes for treating hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT). With the advent of immunotherapy, the combined use of immune checkpoint inhibitors (ICIs) has attracted great attention due to their potential effectiveness in advanced HCC. This study aims to compare the efficacy and safety of a triple therapy regimen (Interventional therapy, TKIs and ICIs, IT-TKI-ICI) with a dual therapy regimen (Interventional therapy and TKIs, IT-TKI) in the treatment of HCC and PVTT (HCC-PVTT). METHODS: A comprehensive search was carried out in PubMed, Web of Science, Embase, Scopus, and the Cochrane Library databases. Primary outcome measures were overall survival (OS) and progression-free survival (PFS), while secondary outcomes included tumor response rate, adverse event incidence as well as downstaging surgery rate. Statistical analysis was conducted using Revman 5.4 software. RESULTS: The meta-analysis finally included 6 cohort studies. The triple therapy group demonstrated significantly prolonged OS and PFS compared to the dual therapy group. Meanwhile, the former exhibited significantly higher rates of objective response rate (ORR), disease control rate (DCR) and better downstaging effects with a higher salvage surgery rate without significantly increasing adverse events. CONCLUSION: In comparison to dual therapy, the triple therapy with interventional therapy, TKIs, and ICIs demonstrates superior efficacy and equivalent safety for HCC-PVTT.

6.
Nat Commun ; 15(1): 4317, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773086

RESUMO

Transition-metal catalyzed allylic substitution reactions of alkenes are among the most efficient methods for synthesizing diene compounds, driven by the inherent preference for an inner-sphere mechanism. Here, we present a demonstration of an outer-sphere mechanism in Rh-catalyzed allylic substitution reaction of simple alkenes using gem-difluorinated cyclopropanes as allyl surrogates. This unconventional mechanism offers an opportunity for the fluorine recycling of gem-difluorinated cyclopropanes via C - F bond cleavage/reformation, ultimately delivering allylic carbofluorination products. The developed method tolerates a wide range of simple alkenes, providing access to secondary, tertiary fluorides and gem-difluorides with 100% atom economy. DFT calculations reveal that the C - C bond formation goes through an unusual outer-sphere nucleophilic substitution of the alkenes to the allyl-Rh species instead of migration insertion, and the generated carbon cation then forms the C - F bond with tetrafluoroborate as a fluoride shuttle.

7.
PLoS One ; 19(4): e0299740, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598457

RESUMO

The excessive use of antibiotics has resulted in the contamination of the environment with antibiotic resistance genes (ARGs), posing a significant threat to public health. Wastewater treatment plants (WWTPs) are known to be reservoirs of ARGs and considered to be hotspots for horizontal gene transfer (HGT) between bacterial communities. However, most studies focused on the distribution and dissemination of ARGs in hospital and urban WWTPs, and little is known about their fate in industrial WWTPs. In this study, collected the 15 wastewater samples containing N,N-dimethylformamide (DMF) from five stages of the anaerobic anoxic aerobic (AAO) process in an industrial WWTPs. The findings revealed a stepwise decrease in DMF and chemical oxygen demand (COD) content with the progression of treatment. However, the number and abundances of ARGs increase in the effluents of biological treatments. Furthermore, the residues of DMF and the treatment process altered the structure of the bacterial community. The correlation analysis indicated that the shift in bacterial community structures might be the main driver for the dynamics change of ARGs. Interestingly, observed that the AAO process may acted as a microbial source and increased the total abundance of ARGs instead of attenuating it. Additionally, found that non-pathogenic bacteria had higher ARGs abundance than pathogenic bacteria in effluents. The study provides insights into the microbial community structure and the mechanisms that drive the variation in ARGs abundance in industrial WWTPs.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Dimetilformamida , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Microbiota/genética , Proliferação de Células
8.
Proc Natl Acad Sci U S A ; 121(16): e2319119121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588435

RESUMO

The advancement of atomically precise dinuclear heterogeneous catalysts holds great potential in achieving efficient catalytic ozonation performance and contributes to the understanding of synergy mechanisms during reaction conditions. Herein, we demonstrate a "ship-in-a-bottle and pyrolysis" strategy that utilizes Fe2(CO)9 dinuclear-cluster to precisely construct Fe2 site, consisting of two Fe1-N3 units connected by Fe-Fe bonds and firmly bonded to N-doped carbon. Systematic characterizations and theoretical modeling reveal that the Fe-Fe coordination motif markedly reduced the devotion of the antibonding state in the Fe-O bond because of the strong orbital coupling interaction of dual Fe d-d orbitals. This facilitates O-O covalent bond cleavage of O3 and enhances binding strength with reaction intermediates (atomic oxygen species; *O and *OO), thus boosting catalytic ozonation performance. As a result, Fe dinuclear site catalyst exhibits 100% ozonation efficiency for CH3SH elimination, outperforming commercial MnO2 catalysts by 1,200-fold. This research provides insights into the atomic-level structure-activity relationship of ozonation catalysts and extends the use of dinuclear catalysts in catalytic ozonation and beyond.

9.
Water Res ; 256: 121608, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657310

RESUMO

The application of ozone (O3) disinfection has been hindered by its low solubility in water and the formation of disinfection by-products (DBPs). In this study, capacitive disinfection is applied as a pre-treatment for O3 oxidation, in which manganese dioxide with a rambutan-like hollow spherical structure is used as the electrode to increase the charge density on the electrode surface. When a voltage is applied, the negative-charged microbes are attracted to the electrodes and killed by electrical interactions. The contact between microbes and capacitive electrodes leads to changes in cell permeability and burst of reactive oxygen species, thereby promoting the diffusion of O3 into the cells. After O3 penetrates the cell membrane, it can directly attack the cytoplasmic constituents, accelerating fatal and irreversible damage to pathogens. As a result, the performance of the capacitance-O3 process is proved better than the direct sum of the two individual process efficiencies. The design of capacitance-O3 system is beneficial to reduce the ozone dosage and DBPs with a broader inactivation spectrum, which is conducive to the application of ozone in primary water disinfection.


Assuntos
Desinfecção , Compostos de Manganês , Óxidos , Ozônio , Ozônio/farmacologia , Ozônio/química , Óxidos/farmacologia , Óxidos/química , Desinfecção/métodos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Membrana Celular/efeitos dos fármacos , Purificação da Água/métodos , Eletrodos , Bactérias/efeitos dos fármacos
10.
Front Pharmacol ; 15: 1288255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645554

RESUMO

The curative effect of single therapy for advanced cholangiocarcinoma (CCA) is poor, thus investigating combined treatment strategies holds promise for improving prognosis. Surufatinib (SUR) is a novel multikinase inhibitor that has been confirmed to prolong survival of patients with advanced CCA. Photodynamic therapy (PDT) can also ablate advanced CCA and relieve biliary obstruction. In this study, we explored the anti-CCA effect of SUR combined with PDT, and explored the underlying mechanism. We found that SUR could effectively inhibit the abilities of proliferation, migration and metastasis in CCA cells (HUCCT-1, RBE). The ability of SUR to inhibit CCA was also confirmed by the HUCCT-1 cell xenograft model in Balb/c nude mice and CCA patient-derived organoids. SUR combined with PDT can significantly enhance the inhibitory effect on CCA, and can be alleviated by two ferroptosis inhibitors (Ferrostatin-1, Deferoxamine). By detecting the level of reactive oxygen species, lipid peroxides, malondialdehyde and glutathione, we further confirmed that SUR combined with PDT can inhibit CCA cells by inducing ferroptosis. Glutathione peroxidase 4 (GPX4) belongs to the glutathione peroxidase family and is mainly responsible for the metabolism of intracellular hydrogen peroxide. GPX4 inhibits ferroptosis by reducing cytotoxic lipid peroxides (L-OOH) to the corresponding alcohols (L-OH). Acyl-CoA synthetase long-chain family member 4 (ACSL4) is a member of the long-chain fatty acid coenzyme a synthetase family and is mainly involved in the biosynthesis and catabolism of fatty acids. ACSL4 induces ferroptosis by promoting the accumulation of lipid peroxides. Both SUR and PDT can induce ferroptosis by promoting ACSL4 and inhibiting GPX4. The regulation effect is found to be more significant in combined treatment group. In conclusion, SUR combined with PDT exerted an anti-CCA effect by inducing ferroptosis. Combination therapy provides a new idea for the clinical treatment of CCA.

11.
Fitoterapia ; 175: 105917, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508501

RESUMO

The aim of this work is to explore the effects of herbal medicine on secondary metabolites of microorganisms during fermentation. Clonostachys rogersoniana was found to metabolize only small amounts of polyketide glycosides rogerson B and C on fresh potatoes, but after replacing the medium to the medicinal plant Rubus delavayi Franch., the type and content of the metabolized polyketones showed significant changes. The sugars and glycosides in R. delavayi are probably responsible for the changes in secondary metabolites. Six polyketide glycosides including a new metabolite, rogerson F, and two potential antitumor compounds, TMC-151C and TMC-151D, were isolated from the extract of R. delavayi fermented by C. rogersoniana. In addition, 13C labeling experiments were used to trace the biosynthesis process of these compounds. TMC-151C and TMC-151D showed significant cytotoxic activity against PANC-1, K562 and HCT116 cancer cells but had no obvious cytotoxic activity against BEAS-2B human normal lung epithelial cells. The yields of TMC-151C and TMC-151D reached 14.37 ± 1.52 g/kg and 1.98 ± 0.43 g/kg, respectively, after fermentation at 28 °C for 30 days. This is the first study to confirm that herbal medicine can induce microbes to metabolize active compounds. And the technology of fermenting medicinal materials can bring more economic value to medicinal plants.

12.
Angew Chem Int Ed Engl ; 63(22): e202403602, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38515395

RESUMO

The use of gem-difluorinated cyclopropanes (gem-DFCPs) as fluoroallyl surrogates under transition-metal catalysis has drawn considerable attention recently but such reactions are restricted to producing achiral or racemic mono-fluoroalkenes. Herein, we report the first enantioselective allylation of indoles under rhodium catalysis with gem-DFCPs. This reaction shows exceptional branched regioselectivity towards rhodium catalysis with gem-DFCPs, which provides an efficient route to enantioenriched fluoroallylated indoles with wide substrate scope and good functional group tolerance.

13.
Int J Gen Med ; 17: 1127-1138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544974

RESUMO

Purpose: Ischemic stroke recurrence (ISR) is prevented by inhibiting platelet function. To investigate the impact of high on-treatment platelet reactivity (HTPR) assessed by thromboelastography (TEG) and its risk factors on ISR in individuals who have experienced acute ischemic stroke (AIS) receiving dual anti-platelet therapy (DAPT). Patients and Methods: At the end of follow-up, a total of 264 patients who met the criteria were enrolled in this cohort study. The primary endpoint event was a recurrence of ischemic stroke within 90 days of onset. Results: The ISR rate was 7.2% (19/264). The recurrence rate in the HTPR group was 15.1% (8/53), which was significantly higher than the 5.2% (11/211) in the non-HTPR group (p = 0.013), and the type 2 diabetes mellitus (T2DM) group (12.5%, 10/80) was also significantly higher compared to the non-T2DM group (4.9%, 9/184) (p = 0.028). T2DM was an isolated risk factor for HTPR (adjusted OR = 3.06, 95% CI 1.57-5.98, P = 0.001). Kaplan-Meier plots showed that the cumulative risk (CR) of ISR was statistically different in the HTPR and T2DM groups compared to the non-HTPR group (log-rank P = 0.009) and the non-T2DM group (log-rank P = 0.026), respectively. The HTPR and T2DM groups had greater hazard ratios (HR) of ISR than the non-HTPR (adjusted HR = 2.78, 95% CI 1.06-7.32, P = 0.038) and non-T2DM (adjusted HR = 2.64, 95% CI 1.01-6.92, P = 0.049) groups. Conclusion: Both HTPR and T2DM are linked to ISR. Platelet Inhibition Rate (PIR) of TEG can early identify patients who are at high risk for having another ischemic stroke in patients undergoing DAPT, and this study may offer more evidence in favor of clinically personalized treatment and secondary prevention tactics.

14.
Neuroimage ; 290: 120560, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431181

RESUMO

Brain extraction and image quality assessment are two fundamental steps in fetal brain magnetic resonance imaging (MRI) 3D reconstruction and quantification. However, the randomness of fetal position and orientation, the variability of fetal brain morphology, maternal organs around the fetus, and the scarcity of data samples, all add excessive noise and impose a great challenge to automated brain extraction and quality assessment of fetal MRI slices. Conventionally, brain extraction and quality assessment are typically performed independently. However, both of them focus on the brain image representation, so they can be jointly optimized to ensure the network learns more effective features and avoid overfitting. To this end, we propose a novel two-stage dual-task deep learning framework with a brain localization stage and a dual-task stage for joint brain extraction and quality assessment of fetal MRI slices. Specifically, the dual-task module compactly contains a feature extraction module, a quality assessment head and a segmentation head with feature fusion for simultaneous brain extraction and quality assessment. Besides, a transformer architecture is introduced into the feature extraction module and the segmentation head. We utilize a multi-step training strategy to guarantee a stable and successful training of all modules. Finally, we validate our method by a 5-fold cross-validation and ablation study on a dataset with fetal brain MRI slices in different qualities, and perform a cross-dataset validation in addition. Experiments show that the proposed framework achieves very promising performance.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Gravidez , Feminino , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Cabeça , Feto/diagnóstico por imagem
15.
Ecol Evol ; 14(3): e11123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444723

RESUMO

Heterospecific pollen (HP) deposition varies widely among species in communities, which has been explicated by two adaptation strategies: HP avoidance and HP tolerance. Studies of the plant-pollinator network have uncovered that oceanic island communities are highly generalized and strongly connected. It remains unclear, however, which strategy prevails in such communities. We examined stigma pollen deposition on 29 plant species, and assessed patterns of HP load size and diversity in the Yongxing Island community. We assessed the effects of phenotypic specialization and species-level network structural properties of plant species on pollen deposition among species. The hypothesis of three accrual patterns of HP within species was tested by illustrating the relationship between conspecific pollen (CP) and HP receipt. Extensive variation occurred among species in HP receipt, while 75.9% of species received less than 10% HP and one species received more than 40% HP throughout the community. Flower size strongly drives the variation of HP receipt, while network structural properties had no effect on the pollen receipt. Nineteen species showed no relationship between the number of HP and CP loads, and they received smaller HP load sizes and lower HP proportions. Most plant species evolved HP avoidance strategy, and HP receipt was an occasional event for most plant species in the generalized community. HP and CP receipts are independent of each other in plant species with the HP avoidance mechanism. Our results highlight that plants in the generalized pollination system may preferentially select to minimize the HP load on stigmas.

16.
Int Immunopharmacol ; 132: 111870, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547771

RESUMO

Extracellular histones have been determined as important mediators of sepsis, which induce excessive inflammatory responses in macrophages and impair innate immunity. Magnesium (Mg2+), one of the essential nutrients of the human body, contributes to the proper regulation of immune function. However, no reports indicate whether extracellular histones affect survival and bacterial phagocytosis in macrophages and whether Mg2+ is protective against histone-induced macrophage damage. Our clinical data revealed a negative correlation between circulating histone and monocyte levels in septic patients, and in vitro experiments confirmed that histones induced mitochondria-associated apoptosis and defective bacterial phagocytosis in macrophages. Interestingly, our clinical data also indicated an association between lower serum Mg2+ levels and reduced monocyte levels in septic patients. Moreover, in vitro experiments demonstrated that Mg2+ attenuated histone-induced apoptosis and defective bacterial phagocytosis in macrophages through the PLC/IP3R/STIM-mediated calcium signaling pathway. Importantly, further animal experiments proved that Mg2+ significantly improved survival and attenuated histone-mediated lung injury and macrophage damage in histone-stimulated mice. Additionally, in a cecal ligation and puncture (CLP) + histone-induced injury mouse model, Mg2+ inhibited histone-mediated apoptosis and defective phagocytosis in macrophages and further reduced bacterial load. Overall, these results suggest that Mg2+ supplementation may be a promising treatment for extracellular histone-mediated macrophage damage in sepsis.


Assuntos
Apoptose , Sinalização do Cálcio , Histonas , Macrófagos , Magnésio , Camundongos Endogâmicos C57BL , Fagocitose , Sepse , Animais , Fagocitose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Magnésio/metabolismo , Histonas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Sepse/imunologia , Sepse/tratamento farmacológico , Sepse/metabolismo , Camundongos , Masculino , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Pessoa de Meia-Idade , Células RAW 264.7
17.
Genes (Basel) ; 15(3)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38540389

RESUMO

ß-1,4-N-acetylgalactosamine transferase 2 (B4GALNT2) is a vital candidate gene that affects the growth traits in sheep. However, whether it has the same function in goats remains to be investigated further. This study selected 348 Nanjiang Yellow goats, screened all exons, and conserved non-coding regions of the B4GALNT2 gene for single-nucleotide polymorphisms (SNPs). Our results revealed the presence of a synonymous mutation, rs672215506, within the exon of the B4GALNT2 gene in the Nanjiang Yellow goat population. The mutation resulted in a decrease in the mRNA stability of the B4GALNT2 gene. The results of SNP detection of the conserved non-coding region of the B4GALNT2 gene showed five potential regulatory SNPs in the Nanjiang Yellow goat population. Except for rs66095343, the ~500 bp fragments of the other four SNPs (rs649127714, rs649573228, rs652899012, and rs639183528) significantly increased the luciferase activity both in goat skeletal muscle satellite cells (MuSCs) and 293T cells. The genetic diversity indexes indicated low or intermediate levels for all six SNPs analyzed, and the genotype frequencies were in Hardy-Weinberg equilibrium. Association analysis showed that rs660965343, rs649127714, and rs649573228 significantly correlate with growth traits in the later stage of growth and development of Nanjiang Yellow goats. The haplotype combinations of H2H3 and H2H2 had higher body weight and greater body size. Moreover, H2H2 haplotype combinations significantly correlated with the litter size of the Nanjiang Yellow goats. The results of our study demonstrate the potential role of the B4GALNT2 gene as a functional genetic marker in the breeding programs of Nanjiang Yellow goats.


Assuntos
Cabras , Polimorfismo de Nucleotídeo Único , Gravidez , Feminino , Animais , Ovinos , Cabras/genética , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Haplótipos , Tamanho da Ninhada de Vivíparos/genética
18.
Small ; : e2400551, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516940

RESUMO

Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.

19.
Domest Anim Endocrinol ; 88: 106847, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38479188

RESUMO

Cold exposure is a common stressor for newborn goats. Skeletal muscle plays an important role in maintaining whole-body homeostasis of glucose and lipid metabolism. However, the molecular mechanisms underlying regulation of skeletal muscle of newborn goats by cold exposure remains unclear. In this study, we found a significant increase (P < 0.01) in serum glucagon levels after 24 h of cold exposure (COLD, 6°C), while glucose and insulin concentrations were significantly decreased (P < 0.01) compared to room temperature (RT, 25°C). Additionally, we found that cold exposure reduced glycogen content (P < 0.01) in skeletal muscle. Pathway enrichment analysis revealed that cold exposure activated skeletal muscle glucose metabolism pathways (including insulin resistance and the insulin signaling pathway) and mitophagy-related pathways. Cold exposure up-regulated the expression of genes involved in fatty acid and triglyceride synthesis, promoting skeletal muscle lipid deposition. Notably, cold exposure induced mitophagy in skeletal muscle.

20.
iScience ; 27(3): 109270, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38487014

RESUMO

Glioblastoma stem cells (GSCs) reside in hypoxic periarteriolar niches of glioblastoma micro-environment, however, the crosstalk of GSCs with macrophages on regulating tumor angiogenesis and progression are not fully elucidated. GSCs-derived exosomes (GSCs-exos) are essential mediators during tumor immune-microenvironment remodeling initiated by GSCs, resulting in M2 polarization of tumor-associated macrophages (TAMs) as we reported previously. Our data disclosed aberrant upregulation of miR-374b-3p in both clinical glioblastoma specimens and human cell lines of GSCs. MiR-374b-3p level was high in GSCs-exos and can be internalized by macrophages. Mechanistically, GSCs exosomal miR-374b-3p induced M2 polarization of macrophages by downregulating phosphatase and tensin expression, thereby promoting migration and tube formation of vascular endothelial cells after coculture with M2 macrophages. Cumulatively, these data indicated that GSCs exosomal miR-374b-3p can enhance tumor angiogenesis by inducing M2 polarization of macrophages, as well as promote malignant progression of glioblastoma. Targeting exosomal miR-374b-3p may serve as a potential target against glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA