Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8018): 860-865, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811736

RESUMO

Composites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties1,2. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions3,4. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths. Here we show that multilayer nanocomposites from 2D nanomaterials with complex textured surfaces strongly and controllably rotate light polarization, despite being nano-achiral and partially disordered. The intense circular dichroism (CD) in nanocomposite films originates from the diagonal patterns of wrinkles, grooves or ridges, leading to an angular offset between axes of linear birefringence (LB) and linear dichroism (LD). Stratification of the layer-by-layer (LBL) assembled nanocomposites affords precise engineering of the polarization-active materials from imprecise nanoplatelets with an optical asymmetry g-factor of 1.0, exceeding those of typical nanomaterials by about 500 times. High thermal resilience of the composite optics enables operating temperature as high as 250 °C and imaging of hot emitters in the near-infrared (NIR) part of the spectrum. Combining LBL engineered nanocomposites with achiral dyes results in anisotropic factors for circularly polarized emission approaching the theoretical limit. The generality of the observed phenomena is demonstrated by nanocomposite polarizers from molybdenum sulfide (MoS2), MXene and graphene oxide (GO) and by two manufacturing methods. A large family of LBL optical nanocomponents can be computationally designed and additively engineered for ruggedized optics.

2.
ACS Appl Mater Interfaces ; 15(17): 21618-21628, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37079371

RESUMO

As the current top-down microchip manufacturing processes approach their resolution limits, there is a need for alternative patterning technologies that offer high feature densities and edge fidelity with single-digit nanometer resolution. To address this challenge, bottom-up processes have been considered, but they typically require sophisticated masking and alignment schemes and/or face materials' compatibility issues. In this work, we report a systematic study into the impact of thermodynamic processes on the area selectivity of chemical vapor deposition (CVD) polymerization of functional [2.2]paracyclophanes (PCP). Adhesion mapping of preclosure CVD films by atomic force microscopy (AFM) provided a detailed understanding of the geometric features of the polymer islands that form under different deposition conditions. Our results suggest a correlation between interfacial transport processes, including adsorption, diffusion, and desorption, and thermodynamic control parameters, such as substrate temperature and working pressure. This work culminates in a kinetic model that predictes both area-selective and nonselective CVD parameters for the same polymer/substrate ensemble (PPX-C + Cu). While limited to a focused subset of CVD polymers and substrates, this work provides an improved mechanistic understanding of area-selective CVD polymerization and highlights the potential for thermodynamic control in tuning area selectivity.

4.
Adv Mater Interfaces ; 9(22)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36387968

RESUMO

For individuals who have experienced tooth loss, dental implants are an important treatment option for oral reconstruction. For these patients, alveolar bone augmentation and acceleration of osseointegration optimize implant stability. Traditional oral surgery often requires invasive procedures, which can result in prolonged treatment time and associated morbidity. It has been previously shown that chemical vapor deposition (CVD) polymerization of functionalized [2.2]paracyclophanes can be used to anchor gene encoding vectors onto biomaterial surfaces and local delivery of a bone morphogenetic protein (BMP)-encoding vector can increase alveolar bone volume and density in vivo. This study is the first to combine the use of CVD technology and BMP gene delivery on titanium for the promotion of bone regeneration and bone to implant contact in vivo. BMP-7 tethered to titanium surface enhances osteoblast cell differentiation and alkaline phosphatase activity in vitro and increases alveolar bone regeneration and % bone to implant contact similar to using high doses of exogenously applied BMP-7 in vivo. The use of this innovative gene delivery strategy on implant surfaces offers an alternative treatment option for targeted alveolar bone reconstruction.

5.
Org Lett ; 24(10): 2030-2034, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35261234

RESUMO

A novel and efficient approach for the amine-directed dehydrogenative C(sp2)-C(sp3) coupling of arylamines with acetonitrile was reported by using FeCl2 as the catalyst. Substituted anilines, aminopyridines, naphthylamines, and some nitrogen-containing heterocyclic arylamines react with inactive acetonitrile to form the corresponding arylacetonitriles in moderate to good yields. This protocol features nontoxic iron catalysis, efficient atom economy, nonprefunctionalized starting materials, good regioselectivity, and excellent compatibility of functional groups and aromatic rings, providing a novel, straightforward, and green approach toward arylacetonitriles.

6.
PNAS Nexus ; 1(3): pgac053, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741461

RESUMO

Third Pole natural cascade alpine lakes (NCALs) are exceptionally sensitive to climate change, yet the underlying cryosphere-hydrological processes and associated societal impacts are largely unknown. Here, with a state-of-the-art cryosphere-hydrology-lake-dam model, we quantified the notable high-mountain Hoh-Xil NCALs basin (including Lakes Zonag, Kusai, Hedin Noel, and Yanhu, from upstream to downstream) formed by the Lake Zonag outburst in September 2011. We demonstrate that long-term increased precipitation and accelerated ice and snow melting as well as short-term heavy precipitation and earthquake events were responsible for the Lake Zonag outburst; while the permafrost degradation only had a marginal impact on the lake inflows but was crucial to lakeshore stability. The quadrupling of the Lake Yanhu area since 2012 was due to the tripling of inflows (from 0.25 to 0.76 km3/year for 1999 to 2010 and 2012 to 2018, respectively). Prediction of the NCALs changes suggests a high risk of the downstream Qinghai-Tibet Railway, necessitating timely adaptions/mitigations.

7.
Nat Commun ; 12(1): 6126, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675192

RESUMO

Building stock growth around the world drives extensive material consumption and environmental impacts. Future impacts will be dependent on the level and rate of socioeconomic development, along with material use and supply strategies. Here we evaluate material-related greenhouse gas (GHG) emissions for residential and commercial buildings along with their reduction potentials in 26 global regions by 2060. For a middle-of-the-road baseline scenario, building material-related emissions see an increase of 3.5 to 4.6 Gt CO2eq yr-1 between 2020-2060. Low- and lower-middle-income regions see rapid emission increase from 750 Mt (22% globally) in 2020 and 2.4 Gt (51%) in 2060, while higher-income regions shrink in both absolute and relative terms. Implementing several material efficiency strategies together in a High Efficiency (HE) scenario could almost half the baseline emissions. Yet, even in this scenario, the building material sector would require double its current proportional share of emissions to meet a 1.5 °C-compatible target.

8.
Org Biomol Chem ; 19(15): 3479-3483, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33899882

RESUMO

A Mn(ii)-catalyzed efficient C-H alkylation of imidazoheterocycles with methyl ketones has been developed via dehydrogenative C(sp3)-C(sp2) coupling which can serve as a novel approach toward hydrocarboxylated imidazolopyridines. The merit of this strategy is illustrated by excellent functional group tolerance and the use of cheap and readily available starting materials.

9.
Langmuir ; 37(5): 1874-1881, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33497243

RESUMO

Over the past 3 decades, there has been a vast expansion of research in both tissue engineering and organic electronics. Although the two fields have interacted little, the materials and fabrication technologies which have accompanied the rise of organic electronics offer the potential for innovation and translation if appropriately adapted to pattern biological materials for tissue engineering. In this work, we use two organic electronic materials as adhesion points on a biocompatible poly(p-xylylene) surface. The organic electronic materials are precisely deposited via vacuum thermal evaporation and organic vapor jet printing, the proven, scalable processes used in the manufacture of organic electronic devices. The small molecular-weight organics prevent the subsequent growth of antifouling polyethylene glycol methacrylate polymer brushes that grow within the interstices between the molecular patches, rendering these background areas both protein and cell resistant. Last, fibronectin attaches to the molecular patches, allowing for the selective adhesion of fibroblasts. The process is simple, reproducible, and promotes a high yield of cell attachment to the targeted sites, demonstrating that biocompatible organic small-molecule materials can pattern cells at the microscale, utilizing techniques widely used in electronic device fabrication.


Assuntos
Materiais Biocompatíveis , Eletrônica , Materiais Biocompatíveis/toxicidade , Engenharia Tecidual
10.
Org Biomol Chem ; 18(17): 3263-3268, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32301941

RESUMO

A new synthetic method toward direct C-N bond formation through saturated C-H amination of benzylic hydrocarbons and inactive aliphatic alkanes with primary aromatic amines under an inexpensive catalyst/oxidant (Cu/DTBP) system has been developed. Both aminopyridines and anilines could react smoothly with primary and secondary benzylic C-H substrates or cyclohexane to form the corresponding aromatic secondary amines in moderate to good yields. This protocol has the advantages of wide functional group tolerance and use of readily available raw materials.

11.
Nat Commun ; 10(1): 4944, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666520

RESUMO

Urban residential buildings make large contributions to energy consumption. Energy consumption per square meter is most widely used to measure energy efficiency in urban residential buildings. This study aims to explore whether it is an appropriate indicator. An extended STIRPAT model was used based on the survey data from 867 households. Here we present that building area per household has a dilution effect on energy consumption per square meter. Neglecting this dilution effect leads to a significant overestimation of the effectiveness of building energy savings standards. Further analysis suggests that the peak of energy consumption per square meter in China's urban residential buildings occurred in 2012 when accounting for the dilution effect, which is 11 years later than it would have occurred without considering the dilution effect. Overall, overlooking the dilution effect may lead to misleading judgments of crucial energy-saving policy tools, as well as the ongoing trend of residential energy consumption in China.

12.
Sensors (Basel) ; 17(3)2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28335534

RESUMO

This study presents the latest updates to the Audubon Society of Western Pennsylvania (ASWP) testbed, a $50,000 USD, 104-node outdoor multi-hop wireless sensor network (WSN). The network collects environmental data from over 240 sensors, including the EC-5, MPS-1 and MPS-2 soil moisture and soil water potential sensors and self-made sap flow sensors, across a heterogeneous deployment comprised of MICAz, IRIS and TelosB wireless motes. A low-cost sensor board and software driver was developed for communicating with the analog and digital sensors. Innovative techniques (e.g., balanced energy efficient routing and heterogeneous over-the-air mote reprogramming) maintained high success rates (>96%) and enabled effective software updating, throughout the large-scale heterogeneous WSN. The edaphic properties monitored by the network showed strong agreement with data logger measurements and were fitted to pedotransfer functions for estimating local soil hydraulic properties. Furthermore, sap flow measurements, scaled to tree stand transpiration, were found to be at or below potential evapotranspiration estimates. While outdoor WSNs still present numerous challenges, the ASWP testbed proves to be an effective and (relatively) low-cost environmental monitoring solution and represents a step towards developing a platform for monitoring and quantifying statistically relevant environmental parameters from large-scale network deployments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA