Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Res ; 28: 0021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828365

RESUMO

With the high incidence rate, distinctive implant characteristic and unique infection pattern, peri-implantitis (PI) requires a specially designed implant animal model for the researches on the pathogenesis and treatments. Previous small-animal PI models exhibit variability in implant site selection, design, and surgical procedures resulting in unnecessary tissue damage and less effectivity. Herein, a quantitative-analysis-based standardized rat model for transmucosal PI-related research was proposed. After dissecting the anatomic structures of the rat maxilla, we determined that placing the implant anterior to the molars in the rat maxilla streamlined the experimental period and enhanced animal welfare. We standardized the model by controlling the rat strain, gender, and size. The customized implant and a series of matched surgical instruments were appropriately designed. A clear, step-by-step surgical process was established. These designs ensured the success rate, stability, and replicability of the model. Each validation method confirmed the successful construction of the model. This study proposed a quantitative-analysis-based standardized transmucosal PI rat model with improved animal welfare and reliable procedures. This model could provide efficient in vivo insights to study the pathogenesis and treatments of PI and preliminary screening data for further large-animal and clinical trials.

2.
Nat Commun ; 15(1): 5287, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902231

RESUMO

Novel therapeutic strategies against difficult-to-treat bacterial infections are desperately needed, and the faster and cheaper way to get them might be by repurposing existing antibiotics. Nanodelivery systems enhance the efficacy of antibiotics by guiding them to their targets, increasing the local concentration at the site of infection. While recently described nanodelivery systems are promising, they are generally not easy to adapt to different targets, and lack biocompatibility or specificity. Here, nanodelivery systems are created that source their targeting proteins from bacteriophages. Bacteriophage receptor-binding proteins and cell-wall binding domains are conjugated to nanoparticles, for the targeted delivery of rifampicin, imipenem, and ampicillin against bacterial pathogens. They show excellent specificity against their targets, and accumulate at the site of infection to deliver their antibiotic payload. Moreover, the nanodelivery systems suppress pathogen infections more effectively than 16 to 32-fold higher doses of free antibiotics. This study demonstrates that bacteriophage sourced targeting proteins are promising candidates to guide nanodelivery systems. Their specificity, availability, and biocompatibility make them great options to guide the antibiotic nanodelivery systems that are desperately needed to combat difficult-to-treat infections.


Assuntos
Antibacterianos , Bacteriófagos , Nanopartículas , Antibacterianos/administração & dosagem , Antibacterianos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Proteínas Virais/metabolismo , Proteínas Virais/química , Animais , Camundongos , Rifampina/farmacologia , Rifampina/administração & dosagem , Humanos , Ampicilina , Infecções Bacterianas/tratamento farmacológico
3.
J Integr Plant Biol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923382

RESUMO

Rice stripe mosaic virus (RSMV) is an emerging pathogen which significantly reduces rice yields in the southern region of China. It is transmitted by the leafhopper Recilia dorsalis, which overwinters in rice fields. Our field investigations revealed that RSMV infection causes delayed rice heading, resulting in a large number of green diseased plants remaining in winter rice fields. This creates a favorable environment for leafhoppers and viruses to overwinter, potentially contributing to the rapid spread and epidemic of the disease. Next, we explored the mechanism by which RSMV manipulates the developmental processes of the rice plant. A rice heading-related E3 ubiquitin ligase, Heading date Associated Factor 1 (HAF1), was found to be hijacked by the RSMV-encoded P6. The impairment of HAF1 function affects the ubiquitination and degradation of downstream proteins, HEADING DATE 1 and EARLY FLOWERING3, leading to a delay in rice heading. Our results provide new insights into the development regulation-based molecular interactions between virus and plant, and highlights the importance of understanding virus-vector-plant tripartite interactions for effective disease management strategies.

4.
Front Vet Sci ; 11: 1382288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863452

RESUMO

Pullorum disease (PD) is a bacterial infection caused by Salmonella pullorum (S. pullorum) that affects poultry. It is highly infectious and often fatal. Antibiotics are currently the mainstay of prophylactic and therapeutic treatments for PD, but their use can lead to the development of resistance in pathogenic bacteria and disruption of the host's intestinal flora. We added neomycin sulfate and different doses of tannic acid (TA) to the drinking water of chicks at 3 days of age and infected them with PD by intraperitoneal injection of S. pullorum at 9 days of age. We analyzed intestinal histopathological changes and the expression of immune-related genes and proteins by using the plate smear method, histological staining, real-time fluorescence quantitative PCR, ELISA kits, and 16S rRNA Analysis of intestinal flora. The results demonstrate that S. pullorum induces alterations in the immune status and impairs the functionality of the liver and intestinal barrier. We found that tannic acid significantly ameliorated S. pullorum-induced liver and intestinal damage, protected the intestinal physical and chemical barriers, restored the intestinal immune barrier function, and regulated the intestinal flora. Our results showed that TA has good anti-diarrhoeal, growth-promoting, immune-regulating, intestinal barrier-protecting and intestinal flora-balancing effects, and the best effect was achieved at an additive dose of 0.2%.

5.
Food Chem ; 451: 139496, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703729

RESUMO

Ochratoxin A (OTA) is a mycotoxin that globally contaminates fruits and their products. Since OTA have a huge negative impact on health hazards and economic losses, it is imperative to establish an effective and safe strategy for detoxification. Here, pancreatin was immobilized on the surface of polydopamine functionalized magnetic porous chitosan (MPCTS@ PDA) for the degradation of OTA. Compared with free pancreatin, MPCTS@ PDA@ pancreatin displayed excellent thermal stability, acid resistance, storage stability and OTA detoxification in wine (>58%). Moreover, the MPCTS@ PDA@ pancreatin retained 43% initial activity after 8 reuse cycles. There was no significant change in the quality of wine after MPCTS@ PDA@ pancreatin treatment. Moreover, it did not exhibit cytotoxicity which facilitated its application in wine. These results demonstrated that MPCTS@ PDA@ pancreatin can be used as a highly effective biocatalysate for OTA detoxification in wine.


Assuntos
Quitosana , Contaminação de Alimentos , Indóis , Ocratoxinas , Pancreatina , Polímeros , Vinho , Ocratoxinas/química , Ocratoxinas/análise , Vinho/análise , Indóis/química , Polímeros/química , Quitosana/química , Porosidade , Pancreatina/química , Pancreatina/metabolismo , Contaminação de Alimentos/análise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
6.
Zhongguo Zhen Jiu ; 44(5): 539-45, 2024 May 12.
Artigo em Chinês | MEDLINE | ID: mdl-38764104

RESUMO

OBJECTIVE: To observe the effect and mechanism of electroacupuncture (EA) on non-canonical pathway of hepatocellular pyroptosis in nonalcoholic fatty liver disease (NAFLD). METHODS: Sixty male SD rats were randomly divided into a normal diet group (n=15) and a high fat modeling group (n=45). The rats in the high fat modeling group were fed with customized high fat diet for 8 weeks to establish NAFLD model. Thirty successfully modeled rats were selected and randomly divided into a model group (n=10), an EA group (n=10) and a non-acupoint with shallow needling group (n=10), and 10 rats were randomly selected from the normal diet group as the control group additionally. In the EA group, EA was applied at bilateral "Fenglong" (ST 40) and "Ganshu" (BL 18), with disperse-dense wave, in frequency of 4 Hz/20 Hz and in intensity of 3 mA. In the non-acupoint with shallow needling group, shallow needling was delivered at points 5 mm from bilateral "Fenglong" (ST 40) and "Ganshu" (BL 18), the EA stimulation parameters were same as the EA group. The intervention was given once a day, 20 min a time, 5 days a week for 4 weeks in the two groups. After intervention, the liver morphology was observed by oil red "O" staining, the serum levels of lipopolysaccharide (LPS), interleukin (IL)-1ß, IL-18 and tumor necrosis factor-α (TNF-α) were detected by ELISA, the protein expression of gasdermin D (GSDMD), GSDMD-N, cysteine aspartic acid specific protease-11 (Caspase-11), IL-1ß, IL-18 and TNF-α in liver tissue were detected by Western blot, the mRNA expression of GSDMD, Caspase-11, IL-1ß, IL-18 and TNF-α in liver tissue was detected by real-time PCR in rats of each group. RESULTS: In the model group, vacuoles in different size were found in the hepatocellular cytoplasm, and the fat droplets were in schistose accumulation. Compared with the model group, the hepatocellular fat droplets and the degree of hepatic steatosis were reduced in the EA group and the non-acupoint with shallow needling group. Compared with the control group, the serum levels of LPS, IL-1ß, IL-18 and TNF-α were increased (P<0.01), the protein and mRNA expression of GSDMD, Caspase-11, IL-1ß, IL-18, TNF-α as well as the protein expression of GSDMD-N in the liver tissue were increased (P<0.01) in the model group. Compared with the model group, the serum levels of LPS, IL-1ß, IL-18 and TNF-α were decreased (P<0.01), the protein and mRNA expression of GSDMD, IL-1ß, IL-18 and TNF-α in the liver tissue were decreased (P<0.01), the protein expression of GSDMD-N and the mRNA expression of Caspase-11 in the liver tissue were decreased (P<0.01) in the EA group and the non-acupoint with shallow needling group. Compared with the model group, the protein expression of Caspase-11 in the liver tissue was decreased (P<0.01) in the EA group. Compared with the non-acupoint with shallow needling group, the serum levels of LPS, IL-1ß, IL-18 and TNF-α were decreased (P<0.01), the protein and mRNA expression of GSDMD, Caspase-11, IL-1ß and IL-18 in the liver tissue were decreased (P<0.01), the protein expression of GSDMD-N and the mRNA expression of TNF-α in the liver tissue were decreased (P<0.01) in the EA group. CONCLUSION: EA can inhibit hepatocellular pyroptosis in NAFLD rats, and its mechanism may be related to reducing the serum level of LPS, and down-regulating the expression of the non-canonical pathway related factors i.e. GSDMD, GSDMD-N, Caspase-11, IL-1ß, IL-18 and TNF-α.


Assuntos
Pontos de Acupuntura , Eletroacupuntura , Hepatopatia Gordurosa não Alcoólica , Piroptose , Ratos Sprague-Dawley , Animais , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Masculino , Ratos , Humanos , Fígado/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Hepatócitos/metabolismo , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Interleucina-1beta/sangue
7.
Zhen Ci Yan Jiu ; 49(4): 358-366, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649203

RESUMO

OBJECTIVES: To analyze the effects of electroacupuncture (EA) at "Fenglong" (ST40) and "Zusanli" (ST36) of different intensities and durations on rats with non-alcoholic fatty liver disease (NAFLD) based on the protein kinase R-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4)-C/EBP homologous protein (CHOP) signaling pathway, so as to explore its mechanism underlying improvement of NAFLD. METHODS: SD rats were randomly divided into normal diet group, high-fat model group, sham EA group, strong stimulation EA (SEA) group, and weak stimulation EA (WEA) group, with 15 rats in each group. Each group was further divided into 2, 3, and 4-week subgroups. NAFLD rat model was established by feeding a high-fat diet. After successful modeling, rats in the SEA and WEA groups received EA at bilateral ST40 and ST36 with dense and sparse waves (4 Hz/20 Hz) at current intensities of 4 mA (SEA group) and 2 mA (WEA group), lasting for 20 minutes, once a day, 5 days a week with 2 days of rest. The sham EA group only had the EA apparatus connected without electricity. Different duration subgroups were intervened for 2, 3, and 4 weeks. After the intervention, the contents of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in rats were detected by an automatic biochemical analyzer;liver morphological changes were observed by Oil Red O staining;real-time fluorescence quantitative PCR and Western blot were used to detect the expression of PERK, ATF4, and CHOP mRNAs and proteins in the rat liver tissue. RESULTS: In the high-fat model group, there was a significant accumulation of red lipid droplets in the liver cells, which was reduced significantly in the SEA group at the 4th week. Compared with the normal diet group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.01) in the high-fat model group . Compared with the high-fat model group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, CHOP mRNAs and proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups. Compared with the sham EA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were decreased (P<0.01, P<0.05) in the SEA and WEA groups, the expression of PERK, ATF4, and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at the 2nd, 3rd, and 4th week, the expression of PERK and CHOP proteins at the 2nd, 3rd, 4th week and ATF4 protein at 2nd week in the liver tissue were decreased (P<0.01, P<0.05) in the WEA group. Compared with the SEA group with the same treatment duration, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and proteins in the liver tissue were elevated (P<0.05, P<0.01) in the WEA group. Compared with the 2-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs and PERK proteins in the liver tissue were decreased (P<0.01, P<0.05) in the SEA and WEA groups at 3rd and 4th week, the expression of ATF4 proteins in the liver tissue was decreased (P<0.01) in the SEA group at 3rd and 4th week, and the expression of CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA group at 4th week and in the WEA group at 3rd and 4th week. Compared with the 3-week time point within the groups, the contents of serum ALT, AST, and the expression of PERK, ATF4, and CHOP mRNAs were significantly decreased (P<0.05, P<0.01) in the SEA and WEA groups at 4th week, the expression of PERK and CHOP proteins in the liver tissue was decreased (P<0.01) in the SEA and WEA groups at 4th week, and the expression of ATF4 protein in the liver tissue was decreased (P<0.05) in the SEA group at 4th week. CONCLUSIONS: EA at ST40 and ST36 can significantly improve liver function in NAFLD rats, and its mechanism of action may involve inhibiting PERK expression thereby targeting the downstream ATF4/CHOP signaling pathway to suppress endoplasmic reticulum stress, exerting a liver protective effect;the optimal effect was observed with EA intensity of 4 mA for 4 weeks.


Assuntos
Fator 4 Ativador da Transcrição , Pontos de Acupuntura , Eletroacupuntura , Fígado , Hepatopatia Gordurosa não Alcoólica , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Transcrição CHOP , eIF-2 Quinase , Animais , Ratos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética
8.
Luminescence ; 39(3): e4717, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504447

RESUMO

Tetracyclines are currently the most commonly used class of antibiotics, and their residue issue significantly impacts public health safety. In this study, a surface modification of perovskite with cetyltrimethylammonium bromide led to the generation of stable electrochemiluminescence (ECL) emitters in aqueous systems and improved the biocompatibility of perovskite. A perovskite quantum dot-based ECL sensing strategy was developed. Utilizing the corresponding aptamer of the antibiotics, strain displacement reactions were triggered, disrupting the ECL quenching system composed of perovskite and Ag nanoclusters (Ag NCs) on the electrode surface, generating a signal to achieve quantitative detection of several common tetracycline antibiotics. The perovskite quantum dot provided a strong and stable initial signal, while the efficient catalytic activity of the silver cluster enhanced the recognition sensitivity. Tetracycline, chlortetracycline, and oxytetracycline were used as examples to demonstrate the differentiation and quantitative detection through this method. In addition, the aptasensor exhibited analytical performance with the linear range (0.1-10 µM OTC) and good recovery rates of 94.7% to 101.6% in real samples. This approach has the potential to become a sensitive and practical approach for assessing antibiotic residues.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Compostos de Cálcio , Nanopartículas Metálicas , Óxidos , Titânio , Tetraciclina , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Antibacterianos , Tetraciclinas , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química
9.
Adv Med Sci ; 69(1): 167-175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38521458

RESUMO

PURPOSE: Psoriasis is a skin disease characterized by excessive proliferation, inflammation and oxidative stress in keratinocytes. The present study aimed to investigate the therapeutic effects of Dendrobium officinale polysaccharide (DOP) on keratinocyte psoriasis-like models. METHODS: The HaCaT keratinocyte inflammation models were induced by interleukin (IL)-22 or lipopolysaccharide (LPS), respectively, and oxidative stress damage within cells was elicited by H2O2 and treated using DOP. CCK-8 and EdU were carried out to detect cell proliferation. ELISA, qRT-PCR, and Western blot were conducted to measure the expression of pro-inflammatory cytokines IL17A, IL-23, IL1ß, tumor necrosis factor alpha (TNF-α), and IL-6. Reactive oxygen species (ROS) level in keratinocytes was detected by flow cytometry. Cell proliferation-associated proteins (PCNA, Ki67, Cyclin D1) and pathway proteins (p-AKT and AKT), and oxidative stress marker proteins (Nrf-2, CAT, SOD1) were detected by Western blot. RESULT: DOP did not affect the proliferation of normal keratinocytes, but DOP was able to inhibit the proliferative activity of IL-22-induced overproliferating keratinocytes and suppress the expression of proliferation-related factors PCNA, Ki67, and Cyclin D1 as well as the proliferation pathway p-AKT. In addition, DOP treatment was able to inhibit IL-22 and LPS-induced inflammation and H2O2-induced oxidative stress, including the expression of IL17A, IL-23, IL1ß, TNF-α, IL-6, and IL1ß, as well as the expression levels of intracellular ROS levels and cellular oxidative stress-related indicators SOD, MDA, CAT, Nrf-2 and SOD1. CONCLUSION: DOP inhibits keratinocyte hyperproliferation, inflammation and oxidative stress to improve the keratinocyte psoriasis-like state.


Assuntos
Proliferação de Células , Dendrobium , Inflamação , Queratinócitos , Estresse Oxidativo , Polissacarídeos , Psoríase , Estresse Oxidativo/efeitos dos fármacos , Dendrobium/química , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Polissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , Psoríase/tratamento farmacológico , Psoríase/patologia , Psoríase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo
10.
Front Microbiol ; 14: 1304198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173680

RESUMO

The antibiotic resistance of Acinetobacter baumannii poses a significant threat to global public health, especially those strains that are resistant to carbapenems. Therefore, novel strategies are desperately needed for the treatment of infections caused by antibiotic-resistant A. baumannii. In this study, we report that brevicidine, a bacterial non-ribosomally produced cyclic lipopeptide, shows synergistic effects with multiple outer membrane-impermeable conventional antibiotics against A. baumannii. In particular, brevicidine, at a concentration of 1 µM, lowered the minimum inhibitory concentration of erythromycin, azithromycin, and rifampicin against A. baumannii strains by 32-128-fold. Furthermore, mechanistic studies were performed by employing erythromycin as an example of an outer membrane-impermeable conventional antibiotic, which showed the best synergistic effects with brevicidine against the tested A. baumannii strains in the present study. The results demonstrate that brevicidine disrupted the outer membrane of A. baumannii at a concentration range of 0.125-4 µM in a dose-dependent manner. This capacity of brevicidine could help the tested outer membrane-impermeable antibiotics enter A. baumannii cells and thereafter exert their antimicrobial activity. In addition, the results show that brevicidine-erythromycin combination exerted strong A. baumannii killing capacity by the enhanced inhibition of adenosine triphosphate biosynthesis and accumulation of reactive oxygen species, which are the main mechanisms causing the death of bacteria. Interestingly, brevicidine and erythromycin combination showed good therapeutic effects on A. baumannii-induced mouse peritonitis-sepsis models. These findings demonstrate that brevicidine is a promising sensitizer candidate of outer membrane-impermeable conventional antibiotics for treating A. baumannii infections in the post-antibiotic age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA