Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pract Radiat Oncol ; 14(2): 93-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37944748

RESUMO

PURPOSE: Oligometastatic disease has expanded the indications for nonspine bone stereotactic body radiation therapy (NSB SBRT). We investigated whether optical surface monitoring systems (OSMS) could enable tattoo-less setup and substitute for 2-dimensional/3-dimensional or cone beam computed tomography (CBCT)-based mid-imaging in NSB SBRT. METHODS AND MATERIALS: OSMS was incorporated in parallel with an existing workflow using pretreatment CBCT and 2-dimensional/3-dimensional kV/kV mid-imaging beginning November 2019. The ability of OSMS to detect out-of-tolerance (>2 mm/>2°) and commanded couch shifts was analyzed. A workflow incorporating OSMS reference captures, CBCT for pretreatment verification, and OSMS/triggered imaging (TI) for intrafraction monitoring was developed for rib/sternum SBRT beginning November 2021 and all NSB SBRT beginning February 2022. Treatment time and CBCT-related radiation dose between the OSMS and the non-OSMS intrafraction monitoring group was analyzed pre- and post-OSMS/TI workflow adoption. All fractions were analyzed through statistical process control with use of an XmR chart of treatment time per quarter from February 2019 to February 2023. Special cause rules were based on Institute for Healthcare Improvement criteria. RESULTS: From February 2019 to February 2023, 1993 NSB SBRT fractions were delivered, including 234 rib, 109 sternum, 214 ilium, and 682 multisite. Over 20 commanded shifts, OSMS could detect 2-mm shifts to within 0.4 mm 67% of the time and 0.8 mm 95% of the time. All NSB SBRT sites showed significant reductions in treatment time, including the greatest improvement in rib total treatment (21.6-13.4 minutes; P = 1.16 × 10-17) and beam time (7.9-3.2 minutes; P = 7.32 × 10-27). Significant reductions in CBCT-related radiation were also observed for several NSB sites. These process improvements were associated with OSMS adoption. CONCLUSIONS: Adoption of a novel NSB SBRT workflow incorporating OSMS/TI for bone intrafraction motion monitoring reduced treatment time and CBCT-related radiation exposure while also allowing for more continuous intrafraction motion monitoring for NSB SBRT. OSMS/TI enabled the transition to a tattoo-less workflow.


Assuntos
Radiocirurgia , Tatuagem , Humanos , Fluxo de Trabalho , Tomografia Computadorizada de Feixe Cônico , Instalações de Saúde , Planejamento da Radioterapia Assistida por Computador
2.
Nat Chem ; 13(12): 1166-1172, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663919

RESUMO

Chiral amines can be made by insertion of a carbene into an N-H bond using two-catalyst systems that combine a transition metal-based carbene-transfer catalyst and a chiral proton-transfer catalyst to enforce stereocontrol. Haem proteins can effect carbene N-H insertion, but asymmetric protonation in an active site replete with proton sources is challenging. Here we describe engineered cytochrome P450 enzymes that catalyse carbene N-H insertion to prepare biologically relevant α-amino lactones with high activity and enantioselectivity (up to 32,100 total turnovers, >99% yield and 98% e.e.). These enzymes serve as dual-function catalysts, inducing carbene transfer and promoting the subsequent proton transfer with excellent stereoselectivity in a single active site. Computational studies uncover the detailed mechanism of this new-to-nature enzymatic reaction and explain how active-site residues accelerate this transformation and provide stereocontrol.


Assuntos
Aminas/síntese química , Sistema Enzimático do Citocromo P-450/química , Biocatálise , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lactonas/síntese química , Lactonas/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Engenharia de Proteínas , Estereoisomerismo
3.
Synlett ; 30(4): 378-382, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30930550

RESUMO

Previous work has demonstrated that variants of a heme protein, Rhodothermus marinus cytochrome c (Rma cyt c), catalyze abiological carbene boron-hydrogen (B-H) bond insertion with high efficiency and selectivity. Here we investigated this carbon-boron bondforming chemistry with cyclic, lactone-based carbenes. Using directed evolution, we obtained a Rma cyt c variant BOR LAC that shows high selectivity and efficiency for B-H insertion of 5- and 6-membered lactone carbenes (up to 24,500 total turnovers and 97.1:2.9 enantiomeric ratio). The enzyme shows low activity with a 7-membered lactone carbene. Computational studies revealed a highly twisted geometry of the 7membered lactone carbene intermediate relative to 5- and 6-membered ones. Directed evolution of cytochrome c together with computational characterization of key iron-carbene intermediates has allowed us to expand the scope of enzymatic carbene B-H insertion to produce new lactone-based organoborons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA