RESUMO
The pH of a solution is an important parameter in crystallization that needs to be controlled in order to ensure success. The actual pH of the crystallization droplet is determined by the combined contribution of the buffers in the screening and protein solutions, although the contribution of the latter to the pH is often ignored. In this study, the effects of the buffer and protein solution pH values on the results of screening are systematically investigated. It was found that these parameters significantly affected the results and thus the following strategy for the selection of appropriate pH values is proposed: (i) when screening with only one protein solution, the pH should be as low, as high or as divergent from the pI as possible for a basic, acidic or neutral protein, respectively, within its stable pH range; (ii) when screening with two protein solutions, the pH values should be well separated from one another; and (iii) when multiple pH values are utilized, an even distribution of pH values is the best approach to increase the success rate of crystallization.
Assuntos
Proteínas/química , Soluções/química , Soluções Tampão , Cristalização , Concentração de Íons de HidrogênioRESUMO
This paper reports on an ultrasonic levitation system developed for crystallization from solution in a containerless condition. The system has been proven to be able to levitate droplets stably and grow crystals rapidly and freely from a levitated droplet. Crystals of four samples, including NaCl, NH(4)Cl, lysozyme, and proteinase K, were obtained successfully utilizing the system. The studies showed that the crystals obtained from the acoustically levitated droplets all exhibited higher growth rates, larger sizes, better shapes, fewer crystals, as well as fewer twins and shards, compared with the control on a vessel wall. The results indicated that containerless ultrasonic levitation could play a key role in improving the crystallization of both inorganic salts and proteins. The ultrasonic levitation system could be used as a ground-based microgravity simulation platform, which could swiftly perform crystallization and screening of crystallization conditions for space crystallization and other ground-based containerless techniques. Moreover, the approach could also be conveniently applied to researching the dynamics and mechanism of crystallization. In addition, the device could be used for the preparation of high-purity materials, analysis of minute or poisonous samples, study of living cells, environmental monitoring, and so on.