Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Sci Ecotechnol ; 23: 100482, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39318543

RESUMO

Coastal wetlands are important blue carbon ecosystems that play a significant role in the global carbon cycle. However, there is insufficient understanding of the variations in soil organic carbon (SOC) stocks and the mechanisms driving these ecosystems. Here we analyze a comprehensive multi-source dataset of SOC in topsoil (0-20 cm) and subsoil (20-100 cm) across 31 coastal wetlands in China to identify the factors influencing their distribution. Structural equation models (SEMs) reveal that hydrology has the greatest overall effect on SOC in both soil layers, followed by vegetation, soil properties, and climate. Notably, the mechanisms driving SOC density differ between the two layers. In topsoil, vegetation type and productivity directly impact carbon density as primary sources of carbon input, while hydrology, primarily through seawater salinity, exerts the largest indirect influence. Conversely, in subsoil, hydrology has the strongest direct effect on SOC, with seawater salinity also influencing SOC indirectly through soil and vegetation mediation. Soil properties, particularly pH, negatively affect carbon accumulation, while climate influences SOC indirectly via its effects on vegetation and soil, with a diminishing impact at greater depths. Using Random Forest, we generate high-resolution maps (90 m × 90 m) of topsoil and subsoil carbon density (R 2 of 0.53 and 0.62, respectively), providing the most detailed spatial distribution of SOC in Chinese coastal wetlands to date. Based on these maps, we estimate that SOC storage to a depth of 1 m in Chinese coastal wetlands totals 74.58 ± 3.85 Tg C, with subsoil carbon storage being 2.5 times greater than that in topsoil. These findings provide important insights into mechanism on driving spatial pattern of blue carbon and effective ways to assess carbon status on a national scale, thus contributing to the advancement of global blue carbon monitoring and management.

2.
Nat Commun ; 15(1): 8398, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333536

RESUMO

China's large-scale tree planting programs are critical for achieving its carbon neutrality by 2060, but determining where and how to plant trees for maximum carbon sequestration has not been rigorously assessed. Here, we developed a comprehensive machine learning framework that integrates diverse environmental variables to quantify tree growth suitability and its relationship with tree numbers. Then, their correlations with biomass carbon stocks were robustly established. Carbon sink potentials were mapped in distinct tree-planting scenarios. Under one of them aligned with China's ecosystem management policy, 44.7 billion trees could be planted, increasing forest stock by 9.6 ± 0.8 billion m³ and sequestering 5.9 ± 0.5 PgC equivalent to double China's 2020 industrial CO2 emissions. We found that tree densification within existing forests is an economically viable and effective strategy and so it should be a priority in future large-scale planting programs.


Assuntos
Biomassa , Sequestro de Carbono , Florestas , Árvores , China , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Ecossistema , Aprendizado de Máquina , Agricultura Florestal/métodos , Conservação dos Recursos Naturais
3.
IEEE Trans Pattern Anal Mach Intell ; 46(11): 7421-7433, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38687660

RESUMO

Generalizing out-of-distribution (OoD) is critical but challenging in real applications such as unmanned aerial vehicle (UAV) flight control. Previous machine learning-based control has shown promise in dealing with complex real-world environments but suffers huge performance degradation facing OoD scenarios, posing risks to the stability and safety of UAVs. In this paper, we found that the introduced random noises during training surprisingly yield theoretically guaranteed performances via a proposed functional optimization framework. More encouragingly, this framework does not involve common Lyapunov assumptions used in this field, making it more widely applicable. With this framework, the upperbound for control error is induced. We also proved that the induced random noises can lead to lower OoD control errors. Based on our theoretical analysis, we further propose OoD-Control to generalize control in unseen environments. Numerical experiments demonstrate the superiority of the proposed algorithm, surpassing previous state-of-the-art by 65% under challenging unseen environments. We further extend to outdoor real-world experiments and found that the control error is reduced by 50% approximately.

4.
Proc Natl Acad Sci U S A ; 121(15): e2309087121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557184

RESUMO

Africa carries a disproportionately high share of the global malaria burden, accounting for 94% of malaria cases and deaths worldwide in 2019. It is also a politically unstable region and the most vulnerable continent to climate change in recent decades. Knowledge about the modifying impacts of violent conflict on climate-malaria relationships remains limited. Here, we quantify the associations between violent conflict, climate variability, and malaria risk in sub-Saharan Africa using health surveys from 128,326 individuals, historical climate data, and 17,429 recorded violent conflicts from 2006 to 2017. We observe that spatial spillovers of violent conflict (SSVCs) have spatially distant effects on malaria risk. Malaria risk induced by SSVCs within 50 to 100 km from the households gradually increases from 0.1% (not significant, P>0.05) to 6.5% (95% CI: 0 to 13.0%). SSVCs significantly promote malaria risk within the average 20.1 to 26.9 °C range. At the 12-mo mean temperature of 22.5 °C, conflict deaths have the largest impact on malaria risk, with an approximately 5.8% increase (95% CI: 1.0 to 11.0%). Additionally, a pronounced association between SSVCs and malaria risk exists in the regions with 9.2 wet days per month. The results reveal that SSVCs increase population exposure to harsh environments, amplifying the effect of warm temperature and persistent precipitation on malaria transmission. Violent conflict therefore poses a substantial barrier to mosquito control and malaria elimination efforts in sub-Saharan Africa. Our findings support effective targeting of treatment programs and vector control activities in conflict-affected regions with a high malaria risk.


Assuntos
Exposição à Violência , Malária , Humanos , Malária/epidemiologia , África Subsaariana/epidemiologia , Temperatura
5.
Artigo em Inglês | MEDLINE | ID: mdl-38381647

RESUMO

Node importance estimation (NIE) is the task of inferring the importance scores of the nodes in a graph. Due to the availability of richer data and knowledge, recent research interests of NIE have been dedicated to knowledge graphs (KGs) for predicting future or missing node importance scores. Existing state-of-the-art NIE methods train the model by available labels, and they consider every interested node equally before training. However, the nodes with higher importance often require or receive more attention in real-world scenarios, e.g., people may care more about the movies or webpages with higher importance. To this end, we introduce Label Informed ContrAstive Pretraining (LICAP) to the NIE problem for being better aware of the nodes with high importance scores. Specifically, LICAP is a novel type of contrastive learning (CL) framework that aims to fully utilize continuous labels to generate contrastive samples for pretraining embeddings. Considering the NIE problem, LICAP adopts a novel sampling strategy called top nodes preferred hierarchical sampling to first group all interested nodes into a top bin and a nontop bin based on node importance scores, and then divide the nodes within the top bin into several finer bins also based on the scores. The contrastive samples are generated from those bins and are then used to pretrain node embeddings of KGs via a newly proposed predicate-aware graph attention networks (PreGATs), so as to better separate the top nodes from nontop nodes, and distinguish the top nodes within the top bin by keeping the relative order among finer bins. Extensive experiments demonstrate that the LICAP pretrained embeddings can further boost the performance of existing NIE methods and achieve new state-of-the-art performance regarding both regression and ranking metrics. The source code for reproducibility is available at https://github.com/zhangtia16/LICAP.

6.
Sci Bull (Beijing) ; 68(22): 2849-2861, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37852823

RESUMO

Land cover changes (LCCs) affect surface temperatures at local scale through biophysical processes. However, previous observation-based studies mainly focused on the potential effects of virtual afforestation/deforestation using the space-for-time assumption, while the actual effects of all types of realistic LCCs are underexplored. Here, we adopted the space-and-time scheme and utilized extensive high-resolution (1-km) satellite observations to perform the first such assessment. We showed that, from 2006 to 2015, the average temperature in the areas with LCCs increased by 0.08 K globally, but varied significantly across latitudes, ranging from -0.05 to 0.18 K. Cropland expansions dominated summertime cooling effects in the northern mid-latitudes, whereas forest-related LCCs caused warming effects elsewhere. These effects accounted for up to 44.6% of overall concurrent warming, suggesting that LCC influences cannot be ignored. In addition, we revealed obvious asymmetries in the actual effects, i.e., LCCs with warming effects occurred more frequently, with stronger intensities, than LCCs with cooling effects. Even for the mutual changes between two covers in the same region, warming LCCs generally had larger magnitudes than their cooling counterparts due to asymmetric changes in transition fractions and driving variables. These novel findings, derived from the assessment of actual LCCs, provide more realistic implications for land management and climate adaptation policies.

7.
PNAS Nexus ; 2(9): pgad308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780232

RESUMO

The northern hemisphere has experienced regional cooling, especially during the global warming hiatus (1998-2012) due to ocean energy redistribution. However, the lack of studies about the natural cooling effects hampers our understanding of vegetation responses to climate change. Using 15,125 ground phenological time series at 3,620 sites since the 1950s and 31-year satellite greenness observations (1982-2012) covering the warming hiatus period, we show a stronger response of leaf onset date (LOD) to natural cooling than to warming, i.e. the delay of LOD caused by 1°C cooling is larger than the advance of LOD with 1°C warming. This might be because cooling leads to larger chilling accumulation and heating requirements for leaf onset, but this non-symmetric LOD response is partially offset by warming-related drying. Moreover, spring greening magnitude, in terms of satellite-based greenness and productivity, is more sensitive to LOD changes in the warming area than in the cooling. These results highlight the importance of considering non-symmetric responses of spring greening to warming and cooling when predicting vegetation-climate feedbacks.

8.
Sci Bull (Beijing) ; 68(19): 2236-2246, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604723

RESUMO

Sustainable development in impoverished areas is still a global challenge owing to trade-offs between development and conservation. There are large poverty-stricken areas (PSAs) in China, which overlap highly with ecologically sensitive areas. China has made great efforts to alleviate poverty over the years. The coordinated relationship between the social economy and the environment in PSAs, however, remains under-recognized. This study developed a county-level index system encompassing the socioeconomic and environmental sectors of China's PSAs. The integrated indexes of the two sectors were developed to reveal the spatial-temporal socioeconomic and environmental patterns and coupling coordination degree (CCD) levels were calculated to assess the coordinated relationships between them. The CCD indicated the increasingly coordinated development of socioeconomic and environmental conditions in China's PSAs from 2000 to 2020. Meanwhile, although the socioeconomic index achieved considerable growth with a growth rate of 58.4%, the environmental index was mildly improved with a growth rate of 19.6%, instead of a reduction. PSAs still have a large gap in socioeconomic development compared to non-poor areas; however, PSAs perform better in environmental index. Overall, the increased coordinated development between the social economy and the environment from 2000 to 2020 can be attributed to China's long-term, large-scale, and targeted interventions in poverty reduction and environmental conservation. Further, benefiting from the geodiversity of China, we identified four poverty reduction models which include advantageously, sustained, periodic, and limited effective models, on the basis of CCD change patterns. The four models can provide valuable experience for the rest of the world in tackling similar trade-offs of poverty reduction and environmental challenges.

9.
PNAS Nexus ; 2(6): pgad172, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37383022

RESUMO

The Tibetan Plateau holds the largest mass of snow and ice outside of the polar regions. The deposition of light-absorbing particles (LAPs) including mineral dust, black carbon and organic carbon and the resulting positive radiative forcing on snow (RFSLAPs) substantially contributes to glacier retreat. Yet how anthropogenic pollutant emissions affect Himalayan RFSLAPs through transboundary transport is currently not well known. The COVID-19 lockdown, resulting in a dramatic decline in human activities, offers a unique test to understand the transboundary mechanisms of RFSLAPs. This study employs multiple satellite data from the moderate resolution imaging spectroradiometer and ozone monitoring instrument, as well as a coupled atmosphere-chemistry-snow model, to reveal the high spatial heterogeneities in anthropogenic emissions-induced RFSLAPs across the Himalaya during the Indian lockdown in 2020. Our results show that the reduced anthropogenic pollutant emissions during the Indian lockdown were responsible for 71.6% of the reduction in RFSLAPs on the Himalaya in April 2020 compared to the same period in 2019. The contributions of the Indian lockdown-induced human emission reduction to the RFSLAPs decrease in the western, central, and eastern Himalayas were 46.8%, 81.1%, and 110.5%, respectively. The reduced RFSLAPs might have led to 27 Mt reduction in ice and snow melt over the Himalaya in April 2020. Our findings allude to the potential for mitigating rapid glacial threats by reducing anthropogenic pollutant emissions from economic activities.

10.
Nat Commun ; 14(1): 2089, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045863

RESUMO

The mid-depth ocean circulation is critically linked to actual changes in the long-term global climate system. However, in the past few decades, predictions based on ocean circulation models highlight the lack of data, knowledge, and long-term implications in climate change assessment. Here, using 842,421 observations produced by Argo floats from 2001-2020, and Lagrangian simulations, we show that only 3.8% of the mid-depth oceans, including part of the equatorial Pacific Ocean and the Antarctic Circumpolar Current, can be regarded as accurately modelled, while other regions exhibit significant underestimations in mean current velocity. Knowledge of ocean circulation is generally more complete in the low-latitude oceans but is especially poor in high latitude regions. Accordingly, we propose improvements in forecasting, model representation of stochasticity, and enhancement of observations of ocean currents. The study demonstrates that knowledge and model representations of global circulation are substantially compromised by inaccuracies of significant magnitude and direction, with important implications for modelled predictions of currents, temperature, carbon dioxide sequestration, and sea-level rise trends.

11.
iScience ; 26(3): 106185, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36879806

RESUMO

The expansion of dryland has caused a huge impact on the natural environment and human society. Aridity index (AI) can effectively reflect the degree of dryness, but spatiotemporally continuous estimation of AI is still challenging. In this study, we develop an ensemble learning algorithm to retrieve AIs from MODIS satellite data in China from 2003 to 2020. The validation proves the high match between these satellite AIs and their corresponding station estimates with a root-mean-square error of 0.21, bias of -0.01, and correlation coefficient of 0.87. The analysis results indicate China has been drying in recent two decades. Moreover, the North China Plain is undergoing an intense drying process, whereas the Southeastern China is becoming significantly more humid. On the national scale, China's dryland area shows a slight expansion, while the hyper arid area has a decreasing trend. These understandings have contributed to China's drought assessment and mitigation.

12.
Nat Commun ; 14(1): 121, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624102

RESUMO

Vegetation change can alter surface energy balance and subsequently affect the local climate. This biophysical impact has been well studied for forestation cases, but the sign and magnitude for persistent earth greening remain controversial. Based on long-term remote sensing observations, we quantify the unidirectional impact of vegetation greening on radiometric surface temperature over 2001-2018. Here, we show a global negative temperature response with large spatial and seasonal variability. Snow cover, vegetation greenness, and shortwave radiation are the major driving factors of the temperature sensitivity by regulating the relative dominance of radiative and non-radiative processes. Combined with the observed greening trend, we find a global cooling of -0.018 K/decade, which slows down 4.6 ± 3.2% of the global warming. Regionally, this cooling effect can offset 39.4 ± 13.9% and 19.0 ± 8.2% of the corresponding warming in India and China. These results highlight the necessity of considering this vegetation-related biophysical climate effect when informing local climate adaptation strategies.


Assuntos
Mudança Climática , Clima , Temperatura , China , Índia , Ecossistema
13.
PLoS One ; 18(1): e0279314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36598886

RESUMO

Scientific literature, as the major medium that carries knowledge between scientists, exhibits explosive growth in the last century. Despite the frequent use of many tangible measures, to quantify the influence of literature from different perspectives, it remains unclear how knowledge is embodied and measured among tremendous scientific productivity, as knowledge underlying scientific literature is abstract and difficult to concretize. In this regard, there has laid a vacancy in the theoretical embodiment of knowledge for their evaluation and excavation. Here, for the first time, we quantify the knowledge from the perspective of information structurization and define a new measure of knowledge quantification index (KQI) that leverages the extent of disorder difference caused by hierarchical structure in the citation network to represent knowledge production in the literature. Built upon 214 million articles, published from 1800 to 2021, KQI is demonstrated for mining influential classics and laureates that are omitted by traditional metrics, thanks to in-depth utilization of structure. Due to the additivity of entropy and the interconnectivity of the network, KQI assembles numerous scientific impact metrics into one and gains interpretability and resistance to manipulation. In addition, KQI explores a new perspective regarding knowledge measurement through entropy and structure, utilizing structure rather than semantics to avoid ambiguity and attain applicability.


Assuntos
Publicações , Semântica
14.
J Environ Manage ; 325(Pt B): 116562, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308967

RESUMO

Vegetation change reflects sensitive responses of ecosystem environment to global climate change as well as land use. It is well known that land use type and its transformation affect vegetation change. However, how the changes in land use intensity (LUI) within different land use types impact vegetation and the interactions with other drivers remain poorly understood. We measured the LUI of Jiangsu Province, China, within the main land use types in 1995, 2000, 2005, 2010, 2015 and 2018 by combining remote sensing-based land use data with representative county scale economic and social indicators. Structural equation models (SEMs) were built to quantify the influences of long term LUI on vegetation change interacting with economic development, climate change and topographical conditions in transformed land, cropland, rural settlements and urbanized land, respectively. Seventy percent of significant vegetation change existed in non-transformed land use types. Although the area with a vegetation greening trend is larger than that with a vegetation browning trend, the vegetation browning areas is prominent in urbanized lands and some croplands in south basins. The constructed SEMs suggested the dominant negative effect of fast economic development regardless of land use types, while LUI played important and different direct and indirect effects on affecting vegetation change significantly interacting with economic development and climate change in different land use types. The LUI increasing led a vegetation greening in cropland, and stronger than climate warming with both positive direct and indirect effects for influencing climate change. The LUI change took negative effects on vegetation change in rural and urban areas, while a positive indirect effect of LUI increasing in urbanized land signaled the positive results of human managements. We then provided some land use-specific suggestions on basin scale for land management in Jiangsu. Our results highlight the necessity of long-term LUI quantification and promote the understanding of its effects on vegetation change interacted with other drivers within different land use types. This can be very helpful for sustainable land use and managements in regions with fast economic development.


Assuntos
Mudança Climática , Ecossistema , Humanos , Desenvolvimento Econômico , Modelos Teóricos , China
15.
Nat Commun ; 13(1): 5315, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085326

RESUMO

Projecting mitigations of carbon neutrality from individual countries in relation to future global warming is of great importance for depicting national climate responsibility but is poorly quantified. Here, we show that China's carbon neutrality (CNCN) can individually mitigate global warming by 0.48 °C and 0.40 °C, which account for 14% and 9% of the global warming over the long term under the shared socioeconomic pathway (SSP) 3-7.0 and 5-8.5 scenarios, respectively. Further incorporating changes in CH4 and N2O emissions in association with CNCN together will alleviate global warming by 0.21 °C and 0.32 °C for SSP1-2.6 and SSP2-4.5 over the long term, and even by 0.18 °C for SSP2-4.5 over the mid-term, but no significant impacts are shown for all SSPs in the near term. Divergent responses in alleviated warming are seen at regional scales. The results provide a useful reference for the global stocktake, which assesses the collective progress towards the climate goals of the Paris Agreement.


Assuntos
Carbono , Aquecimento Global , Dióxido de Carbono/metabolismo , China , Aquecimento Global/prevenção & controle , Efeito Estufa , Modelos Teóricos
16.
PLoS One ; 17(9): e0275192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36170296

RESUMO

The rapid development of modern science nowadays makes it rather challenging to pick out valuable ideas from massive scientific literature. Existing widely-adopted citation-based metrics are not adequate for measuring how well the idea presented by a single publication is developed and whether it is worth following. Here, inspired by traditional X-ray imaging, which returns internal structure imaging of real objects along with corresponding structure analysis, we propose Scientific X-ray, a framework that quantifies the development degree and development potential for any scientific idea through an assembly of 'X-ray' scanning, visualization and parsing operated on the citation network associated with a target publication. We pick all 71,431 scientific articles of citation counts over 1,000 as high-impact target publications among totally 204,664,199 publications that cover 16 disciplines spanning from 1800 to 2021. Our proposed Scientific X-ray reproduces how an idea evolves from the very original target publication all the way to the up to date status via an extracted 'idea tree' that attempts to preserve the most representative idea flow structure underneath each citation network. Interestingly, we observe that while the citation counts of publications may increase unlimitedly, the maximum valid idea inheritance of those target publications, i.e., the valid depth of the idea tree, cannot exceed a limit of six hops, and the idea evolution structure of any arbitrary publication unexceptionally falls into six fixed patterns. Combined with a development potential index that we further design based on the extracted idea tree, Scientific X-ray can vividly tell how further a given idea presented by a given publication can still go from any well-established starting point. Scientific X-ray successfully identifies 40 out of 49 topics of Nobel prize as high-potential topics by their prize-winning papers in an average of nine years before the prizes are released. Various trials on articles of diverse topics also confirm the power of Scientific X-ray in digging out influential/promising ideas. Scientific X-ray is user-friendly to researchers with any level of expertise, thus providing important basis for grasping research trends, helping scientific policy-making and even promoting social development.


Assuntos
Indexação e Redação de Resumos , Distinções e Prêmios , Humanos , Prêmio Nobel , Publicações , Pesquisadores , Relatório de Pesquisa
17.
Sci Adv ; 8(27): eabo0095, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857465

RESUMO

Urban environments, regarded as "harbingers" of future global change, may exert positive or negative impacts on urban vegetation growth. Because of limited ground-based experiments, the responses of vegetation to urbanization and its associated controlling factors at the global scale remain poorly understood. Here, we use satellite observations from 2001 to 2018 to quantify direct and indirect impacts of urbanization on vegetation growth in 672 worldwide cities. After controlling for the negative direct impact of urbanization on vegetation growth, we find a widespread positive indirect effect that has been increasing over time. These indirect effects depend on urban development intensity, population density, and background climate, with more pronounced positive effects in cities with cold and arid environments. We further show that vegetation responses to urbanization are modulated by a cities' developmental status. Our findings have important implications for understanding urbanization-induced impacts on vegetation and future sustainable urban development.

18.
Geospat Health ; 17(s1)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35735947

RESUMO

Coronavirus disease 2019 (COVID-19) has strongly impacted society since it was first reported in mainland China in December 2020. Understanding its spread and consequence is crucial to pandemic control, yet difficult to achieve because we deal with a complex context of social environment and variable human behaviour. However, few efforts have been made to comprehensively analyse the socio-economic influences on viral spread and how it promotes the infection numbers in a region. Here we investigated the effect of socio-economic factors and found a strong linear relationship between the gross domestic product (GDP) and the cumulative number of confirmed COVID-19 cases with a high value of R2 (between 0.57 and 0.88). Structural equation models were constructed to further analyse the social-economic interaction mechanism of the spread of COVID-19. The results show that the total effect of GDP (0.87) on viral spread exceeds that of population influx (0.58) in the central cities of mainland China and that the spread mainly occurred through its interplay with other factors, such as socio-economic development. This evidence can be generalized as socio-economic factors can accelerate the spread of any infectious disease in a megacity environment. Thus, the world is in urgent need of a new plan to prepare for current and future pandemics.


Assuntos
COVID-19 , COVID-19/epidemiologia , China/epidemiologia , Produto Interno Bruto , Humanos , Pandemias , Fatores Socioeconômicos
19.
Nat Hum Behav ; 6(3): 349-358, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35301467

RESUMO

The COVID-19 pandemic has created unprecedented burdens on people's physical health and subjective well-being. While countries worldwide have developed platforms to track the evolution of COVID-19 infections and deaths, frequent global measurements of affective states to gauge the emotional impacts of pandemic and related policy interventions remain scarce. Using 654 million geotagged social media posts in over 100 countries, covering 74% of world population, coupled with state-of-the-art natural language processing techniques, we develop a global dataset of expressed sentiment indices to track national- and subnational-level affective states on a daily basis. We present two motivating applications using data from the first wave of COVID-19 (from 1 January to 31 May 2020). First, using regression discontinuity design, we provide consistent evidence that COVID-19 outbreaks caused steep declines in expressed sentiment globally, followed by asymmetric, slower recoveries. Second, applying synthetic control methods, we find moderate to no effects of lockdown policies on expressed sentiment, with large heterogeneity across countries. This study shows how social media data, when coupled with machine learning techniques, can provide real-time measurements of affective states.


Assuntos
COVID-19 , Atitude , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Humanos , Processamento de Linguagem Natural , Pandemias
20.
Environ Pollut ; 303: 119057, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35231542

RESUMO

Reliable attribution is crucial for understanding various climate change issues. However, complicated inner-interactions between various factors make causation inference in atmospheric environment highly challenging. Taking PM2.5-Meteorology causation, which involves a large number of non-Linear and uncertain interactions between many meteorological factors and PM2.5, as a case, we examined the performance of a series of mainstream statistical models, including Correlation Analysis (CA), Partial Correlation Analysis (PCA), Structural Equation Model (SEM), Convergent Cross Mapping (CCM), Partial Cross Mapping (PCM) and Geographical Detector (GD). From a coarse perspective, the Top 3 major meteorological factors for PM2.5 in 190 cities across China extracted using different models were generally consistent. From a strict perspective, the extracted dominant meteorological factor for PM2.5 demonstrated large model variations and shared a limited consistence. Such models as SEM and PCM, which are capable of further separating direct and indirect causation in simple systems, performed poorly to identify the direct and indirect PM2.5-Meteorology causation. The notable inconsistence denied the feasibility of employing multiple models for better causation inference in atmospheric environment. Instead, the sole use of CCM, which is advantageous in dealing with non-linear causation and removing disturbing factors, is a preferable strategy for causation inference in complicated ecosystems. Meanwhile, given the multi-direction, uncertain interactions between many variables, we should be more cautious and less ambitious on the separation of direct and indirect causation. For better causation inference in the complicated atmospheric environment, the combination of statistical models and atmospheric models, and the further exploration of Deep Neural Network can be promising strategies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Ecossistema , Monitoramento Ambiental , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA