Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Environ Sci Technol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771927

RESUMO

Autotrophic denitrification utilizing iron sulfides as electron donors has been well studied, but the occurrence and mechanism of abiotic nitrate (NO3-) chemodenitrification by iron sulfides have not yet been thoroughly investigated. In this study, NO3- chemodenitrification by three types of iron sulfides (FeS, FeS2, and pyrrhotite) at pH 6.37 and ambient temperature of 30 °C was investigated. FeS chemically reduced NO3- to ammonium (NH4+), with a high reduction efficiency of 97.5% and NH4+ formation selectivity of 82.6%, but FeS2 and pyrrhotite did not reduce NO3- abiotically. Electrochemical Tafel characterization confirmed that the electron release rate from FeS was higher than that from FeS2 and pyrrhotite. Quenching experiments and density functional theory calculations further elucidated the heterogeneous chemodenitrification mechanism of NO3- by FeS. Fe(II) on the FeS surface was the primary site for NO3- reduction. FeS possessing sulfur vacancies can selectively adsorb oxygen atoms from NO3- and water molecules and promote water dissociation to form adsorbed hydrogen, thereby forming NH4+. Collectively, these findings suggest that the NO3- chemodenitrification by iron sulfides cannot be ignored, which has great implications for the nitrogen, sulfur, and iron cycles in soil and water ecosystems.

2.
World J Gastrointest Oncol ; 16(5): 1737-1744, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38764828

RESUMO

BACKGROUND: Gastric cancer is a global health concern that poses a significant threat to human well-being. AIM: To detecting serum changes in carcinoembryonic antigen (CEA), carbohydrate antigens (CA) 724, CA242, and CA19-9 expression among patients with gastric cancer. METHODS: Eighty patients diagnosed with gastric cancer between January 2020 and January 2023 were included in the observation group, while 80 patients with benign gastric diseases were included in the control group. Both groups were tested for tumor markers (CA724, CEA, CA242, and CA19-9]. Tumor marker indicators (CA724, CEA, CA242, and CA19-9) were compared between the two groups, assessing positive rates of tumor markers across various stages in the observation group. Additionally, single and combined detection of various tumor markers were examined. RESULTS: The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value observed for the combined detection of CA724, CEA, CA242, and CA19-9 were higher than those of CA724, CEA, CA242, and CA19-9 individually. Therefore, the combined detection of CA724, CEA, CA242, and CA19-9 has a high diagnostic accuracy and could reduce the occurrence of missed or misdiagnosed cases, facilitating the early diagnosis and treatment of patients. CONCLUSION: CA724, CEA, CA242, and CA19-9 serum levels in gastric cancer patients significantly surpassed those in non-gastric cancer patients (P < 0.05). Their combined detection can improve the diagnostic accuracy for gastric cancer, warranting clinical promotion.

3.
Phys Chem Chem Phys ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752432

RESUMO

High-level ab initio calculations are conducted for studying the kinetics of three linear pentanol radicals generated through H-atom abstraction reactions. The species involved are optimized using the M06-2X/6-311++G(d,p) level of theory, while a relaxed scan at the M06-2X/6-31g level of theory with 10° increments is used for the hindrance potential for low-frequency torsional modes. Single-point energies for all stationary points are obtained through the QCISD(T) and MP2 methods in combination with cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets, which can be extrapolated to the complete basis set (CBS) limit. The rate constants and branching ratios for isomerization and decomposition reactions are computed over a temperature range of 250-2000 K and a pressure range of 0.01-100 atm. Isomerization reactions are dominant at low temperatures, while decomposition reactions are more dominant at high temperatures. The branching ratio of the isomerization reaction exhibits a slight decrease with increasing pressure, while the trend for decomposition reactions depends on the type of the breaking bond. Based on the calculations for five branched pentanol radicals in part I, kinetics of linear and branched pentanol radicals are compared in this work and the results reveal that, for the same kind of ß-scission reaction at similar positions of linear and branched pentanol radicals, the rate constants of branched ones are faster than those of linear ones at low temperatures. The hydroxyl group adjacent to the breaking bond can increase the ß-scission reaction rate constants, while the effect can be ignored when the hydroxyl group is not adjacent to the breaking bond. Moreover, compared to when the hydroxyl group is located in the middle of the carbon chain, its positioning at the chain's end yields a more noticeable impact on the products and rate constants of C-O bond and O-H bond ß-scission reactions. Besides, when incorporating calculated rate constants into the CRECK model, the updated mechanism shows a better performance for ignition delay times of 1-pentanol in the NTC range but exhibits lower reactivity at higher temperatures. The simulation of speciation profiles also shows better agreement with the experimental data obtained using a flow reactor.

4.
CNS Neurosci Ther ; 30(3): e14642, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38430464

RESUMO

BACKGROUND: Inhibiting secondary inflammatory damage caused by glial cells and creating a stable microenvironment is one of the main strategies to investigate drugs for the treatment of spinal cord injury. Acetyl-11-keto-beta-boswellic acid (AKBA) is the active component of the natural drug boswellia, which has anti-inflammatory and antioxidant effects and offers a possible therapeutic option for spinal cord injury. METHODS: In this study, a spinal cord injury model was established by crushing spinal cord, respectively, to detect the M1 macrophage inflammatory markers: iNOS, TNF-α, IL-1ß, and the M2 macrophage markers CD206, ARG-1, IL-10, and the detection of antioxidant enzymes and MDA. In vitro, macrophages were cultured to verify the main mechanism of the macrophage switch from Nrf2/HO-1 to M2 type by flow cytometry, immunofluorescence, and other techniques. Macrophage and Schwann cell co-culture validated the migration mechanism of Schwann cells promoted by AKBA. RESULTS: AKBA significantly enhanced the antioxidant enzyme activities of CAT, GSH-Px, T-AOC, and SOD, reduced MDA content, and reduced oxidative damage caused by spinal cord injury via the Nrf2/HO-1 signaling pathway; AKBA mediates Nrf2/HO-1/IL-10, converts macrophages from M1 to M2 type, reduces inflammation, and promotes Schwann cell migration, thereby accelerating the repair of spinal cord injury in rats. CONCLUSIONS: Our work demonstrates that AKBA can attenuate oxidative stress as well as the secondary inflammatory injury caused by macrophages after SCI, promote Schwann cell migration to the injury site, and thus accelerate the repair of the injured spinal cord.


Assuntos
Interleucina-10 , Traumatismos da Medula Espinal , Triterpenos , Ratos , Animais , Interleucina-10/metabolismo , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismos da Medula Espinal/metabolismo , Macrófagos/metabolismo , Medula Espinal/metabolismo , Movimento Celular
5.
Antioxidants (Basel) ; 13(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38539841

RESUMO

Premature ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by the abnormal alteration of hormone levels such as FSH and E2. POI causes infertility, severe daily life disturbances, and long-term health risks. However, the underlying mechanism remains largely unknown. In this study, we found that POI is associated with the cellular senescence of ovarian granulosa cells, and TRIM28 mediates oxidative stress (OS)-induced cellular senescence in granulosa cells. Mechanistically, OS causes a decrease in TRIM28 protein levels in KGN cells. Subsequently, it triggers an increase in the levels of autophagy marker proteins ATG5 and LC3B-II, and the downregulation of P62. Abnormal autophagy induces an increase in the levels of cellular senescence markers γ-H2A.X, P16, and P21, provoking cellular senescence in vitro. The overexpression of ovarian TRIM28 through a microinjection of lentivirus attenuated autophagy, cellular senescence, and follicular atresia in the ovaries of POI mice and improved mouse fertility in vivo. Our study highlights the triggers for POI, where the reduction of TRIM28, which is regulated by reactive oxygen species, causes follicular atresia and POI via triggering autophagy and inducing granulosa cell senescence. Shedding light on TRIM28 may represent a potential intervention strategy for POI.

6.
J Hum Genet ; 69(5): 197-203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374166

RESUMO

CAPZA2 encodes the α2 subunit of CAPZA, which is vital for actin polymerization and depolymerization in humans. However, understanding of diseases associated with CAPZA2 remains limited. To date, only three cases have been documented with neurodevelopmental abnormalities such as delayed motor development, speech delay, intellectual disability, hypotonia, and a history of seizures. In this study, we document a patient who exhibited seizures, mild intellectual disability, and impaired motor development yet did not demonstrate speech delay or hypotonia. The patient also suffered from recurrent instances of respiratory infections, gastrointestinal and allergic diseases. A novel de novo splicing variant c.219+1 G > A was detected in the CAPZA2 gene through whole-exome sequencing. This variant led to exon 4 skipping in mRNA splicing, confirmed by RT-PCR and Sanger sequencing. To our knowledge, this is the third study on human CAPZA2 defects, documenting the fourth unambiguously diagnosed case. Furthermore, this splicing mutation type is reported here for the first time. Our research offers additional support for the existence of a CAPZA2-related non-syndromic neurodevelopmental disorder. Our findings augment our understanding of the phenotypic range associated with CAPZA2 deficiency and enrich the knowledge of the mutational spectrum of the CAPZA2 gene.


Assuntos
Proteína de Capeamento de Actina CapZ , Deficiências do Desenvolvimento , Epilepsia , Heterozigoto , Hipotonia Muscular , Mutação , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Epilepsia/genética , Sequenciamento do Exoma , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Fenótipo , Splicing de RNA/genética , Proteína de Capeamento de Actina CapZ/genética
7.
Mol Cell Biochem ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306011

RESUMO

Alkylation repair homolog protein 5 (ALKBH5) is reported to participate in infantile hemangioma (IH) progression. However, the underlying mechanism of ALKBH5 in IH remains unclear. Using qRT-PCR and Western blotting, ALKBH5, forkhead box F1 (FOXF1) and hexokinase 2 (HK-2) expressions in IH tissues and IH-derived endothelial cells XPTS-1 were assessed. The Me-RIP assay was used to analyze FOXF1 m6A level. CCK8, colony formation, flow cytometry and transwell assays were employed to determine IH cell viability, proliferation, apoptosis, migration and invasion. The interactions between YTH (YT521-B homology) domain 2 (YTHDF2), FOXF1 and HK-2 were analyzed by RIP, dual luciferase reporter gene assay and/or ChIP assay. The in vivo IH growth was evaluated in immunocompromised mice. FOXF1 was overexpressed in IH tissues, and its silencing inhibited IH cell proliferation, migration and invasion whereas promoting cell apoptosis in vitro. ALKBH5 upregulation facilitated FOXF1 mRNA stability and expression in IH cells in a m6A-YTHDF2-dependent manner. FOXF1 downregulation reversed the impact of ALKBH5 upregulation on IH cellular phenotypes. It also turned out that FOXF1 positively regulated HK-2 expression in IH cells through interacting with the HK-2 promoter. HK-2 upregulation abolished FOXF1 knockdown's inhibition on IH cell aggressive behaviors. ALKBH5 or FOXF1 silencing suppressed IH tumor development via HK-2 signaling in immunocompromised mice. ALKBH5 promoted FOXF1 expression m6A-YTHDF2 dependently, which in turn elevated HK-2 expression, thereby accelerating IH development.

8.
Ecotoxicol Environ Saf ; 273: 116121, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402792

RESUMO

In recent years, nanoplastics (NPs) and triclosan (TCS, a pharmaceutical and personal care product) have emerged as environmental pollution issues, and their combined presence has raised widespread concern regarding potential risks to organisms. However, the combined toxicity and mechanisms of NPs and TCS remain unclear. In this study, we investigated the toxic effects of polystyrene NPs and TCS and their mechanisms on KGN cells, a human ovarian granulosa cell line. We exposed KGN cells to NPs (150 µg/mL) and TCS (15 µM) alone or together for 24 hours. Co-exposure significantly reduced cell viability. Compared with exposure to NPs or TCS alone, co-exposure increased reactive oxygen species (ROS) production. Interestingly, co-exposure to NPs and TCS produced synergistic effects. We examined the activity of superoxide dismutase (SOD) and catalase (CAT), two antioxidant enzymes; it was significantly decreased after co-exposure. We also noted an increase in the lipid oxidation product malondialdehyde (MDA) after co-exposure. Furthermore, co-exposure to NPs and TCS had a more detrimental effect on mitochondrial function than the individual treatments. Co-exposure activated the NRF2-KEAP1-HO-1 antioxidant stress pathway. Surprisingly, the expression of SESTRIN2, an antioxidant protein, was inhibited by co-exposure treatments. Co-exposure to NPs and TCS significantly increased the autophagy-related proteins LC3B-II and LC3B-Ⅰ and decreased P62. Moreover, co-exposure enhanced CASPASE-3 expression and inhibited the BCL-2/BAX ratio. In summary, our study revealed the synergistic toxic effects of NPs and TCS in vitro exposure. Our findings provide insight into the toxic mechanisms associated with co-exposure to NPs and TCS to KGN cells by inducing oxidative stress, activations of the NRF2-KEAP1-HO-1 pathway, autophagy, and apoptosis.


Assuntos
Triclosan , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Triclosan/toxicidade , Triclosan/metabolismo , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Microplásticos/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Células da Granulosa/metabolismo
9.
Sci Total Environ ; 916: 170414, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272084

RESUMO

Sunlight-induced photochemical transformations greatly affect the persistence of organic pollutants in natural environment. Whereas sunlight intensity is well-known to affect pollutant phototransformation rates, the reliance of pollutant phototransformation kinetics on sunlight spectrum remains poorly understood, which may greatly vary under different spatial-temporal, water matrix, and climatic conditions. Here, we systematically assessed the wavelength-dependent direct and indirect phototransformations of 12 organic pollutants. Their phototransformation rates dramatically decreased with light wavelength increasing from 375 to 632 nm, with direct photolysis displaying higher wavelength-dependence than indirect photolysis. Remarkably, UV light dominated both direct (90.4-99.5 %) and indirect (64.6-98.7 %) photochemical transformations of all investigated organic pollutants, despite its minor portion in sunlight spectrum (e.g., 6.5 % on March 20 at the equator). Based on wavelength-dependent rate constant spectrum, the predicted phototransformation rate of chloramphenicol (4.5 ± 0.7 × 10-4 s-1) agreed well with the observed rate under outdoor sunlight irradiation (4.3 ± 0.0 × 10-4 s-1), and there is no significant difference between the predicted rate and the observed rate (p-value = 0.132). Moreover, rate constant and quantum yield coefficient (QYC) spectrum could be applied for facilely investigate the influence of spectral changes on the phototransformation of pollutants under varying spatial-temporal (e.g., season, latitude) and climatic conditions (e.g., cloud cover). Our study highlights the wavelength-dependence of both direct and indirect phototransformation of pollutants, and the UV part of natural sunlight plays a decisive role in the phototransformation of pollutants.

10.
Photodiagnosis Photodyn Ther ; 45: 103935, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104706

RESUMO

OBJECTIVE: To investigate the changes in macular vessel density (VD) of the superficial layer of retina (SLR) and deep layer of retina (DLR) in dysthyroid optic neuropathy (DON) after high-dose intravenous pulse methylprednisolone (IVMP). MATERIALS AND METHODS: Eighteen DON patients (29 eyes) who completed high-dose IVMP and 16 healthy individuals (32 eyes) were enrolled in this study. Optical coherence tomography angiography (OCTA) image analysis and comprehensive ophthalmic examinations were performed, including the SLR macular whole-image VD (SLR-mwiVD) and DLR-mwiVD, best-corrected visual acuity (BCVA), the mean deviation of visual field (VF-MD), pattern standard deviation of visual field (VF-PSD) and the other parameters. RESULTS: The SLR-mwiVD (41.39 ± 4.71 vs. 48.13 ± 3.68, p < 0.001) and DLR-mwiVD (40.77 ± 5.85 vs. 49.14 ± 7.02, p < 0.001) were decreased in DON compared to control eyes. After IVMP, visual function parameters were improved, and SLR-mwiVD (49.41 ± 3.18, p < 0.001) and DLR-mwiVD (50.41 ± 4.04, p < 0.001) were increased in the DON group compared to pretreatment. The increased SLR-mwiVD and DLR-mwiVD were significantly correlated with improvements in BCVA (Log MAR: from 0.62 ± 0.49 to -0.01 ± 0.03, p < 0.001), VF-MD (from - 6.89 ± 2.89 dB to - 1.75 ± 1.29 dB, p < 0.001) and VF-PSD (from 4.38 ± 2.52 dB to 2.32 ± 1.64 dB, p < 0.001). CONCLUSION: The increase in macular VD was significantly correlated with the improvement in visual function in DON after IVMP. Macular VD changes on OCTA may be a useful indicator for the response in DON after IVMP.


Assuntos
Disco Óptico , Doenças do Nervo Óptico , Fotoquimioterapia , Humanos , Disco Óptico/irrigação sanguínea , Angiofluoresceinografia/métodos , Vasos Retinianos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Doenças do Nervo Óptico/tratamento farmacológico
11.
Ther Adv Med Oncol ; 15: 17588359231213621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028139

RESUMO

Background: This study evaluated the cost-effectiveness of serplulimab plus chemotherapy versus chemotherapy alone in treating advanced/metastatic esophageal squamous cell carcinoma (ESCC) within the Chinese health care system. Methods: A partitioned survival model based on ASTRUM-007 trial patient characteristics was developed. Efficacy, safety, and medical/economic data were obtained from the trial and real-world clinical practice. Costs, quality-adjusted life years (QALY), and incremental cost-effectiveness ratios (ICERs) were calculated for both treatment strategies. Sensitivity, subgroup, and scenario analyses were performed to assess the uncertainty impact. Results: Serplulimab combined with chemotherapy yielded an ICER of US$ 53,538.27/QALY. Deterministic sensitivity analysis identified patient survival and serplulimab price as influential parameters. Probabilistic sensitivity analysis showed a 47.33% probability of cost-effectiveness at a willingness-to-pay (WTP) threshold of US$ 53,541/QALY and 0.05% at three times China's GDP per capita. Subgroup analysis revealed that patients with a programmed death-ligand 1 (PD-L1) expression combined positive score (CPS) ⩾10 had a lower hazard ratio (0.59) and ICER (US$ 29,935.23/QALY), with a 95.36% probability of cost-effectiveness. Scenario analysis demonstrated that the drug donation discount policy significantly increased the likelihood of cost-effective serplulimab-chemotherapy combinations in Jiangsu, Fujian, and Guangdong at 99.99%, 99.90%, and 94.16%, respectively. Conclusion: Compared to chemotherapy alone, serplulimab combined with chemotherapy is currently not a cost-effective first-line treatment for advanced/metastatic ESCC in China. However, as serplulimab plus chemotherapy regimens evolve and price competition among programmed death 1 (PD-1) inhibitors intensifies, this combination may become a cost-effective treatment option.


Assessing Serplulimab's Value in Treating Advanced Esophageal Cancer in China In China, esophageal cancer patients often need chemotherapy due to late diagnosis. Serplulimab, an expensive new treatment, is not cost-effective when combined with chemotherapy for most patients. However, for specific patient groups with a PD-L1 expression CPS ⩾ 10, it is both effective and affordable. This finding helps health care leaders create better pricing strategies.

12.
Cell Death Dis ; 14(11): 757, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985768

RESUMO

Aggressiveness and drug resistance are major challenges in the clinical treatment of glioblastoma (GBM). Our previously research reported a novel candidate oncogene ribosomal protein L22 like 1 (RPL22L1). The aim of this study was to elucidate the potential role and mechanism of RPL22L1 in progression and temozolomide (TMZ) resistance of GBM. Online database, tissue microarrays and clinical tissue specimens were used to evaluate the expression and clinical implication of RPL22L1 in GBM. We performed cell function assays, orthotopic and subcutaneous xenograft tumor models to evaluate the effects and molecular mechanisms of RPL22L1 on GBM. RPL22L1 expression was significantly upregulated in GBM and associated with poorer prognosis. RPL22L1 overexpression enhanced GBM cell proliferation, migration, invasion, TMZ resistance and tumorigenicity, which could be reduced by RPL22L1 knockdown. Further, we found RPL22L1 promoted mesenchymal phenotype of GBM and the impact of these effects was closely related to EGFR/STAT3 pathway. Importantly, we observed that STAT3 specific inhibitor (Stattic) significantly inhibited the malignant functions of RPL22L1, especially on TMZ resistance. RPL22L1 overexpressed increased combination drug sensitive of Stattic and TMZ both in vitro and in vivo. Moreover, Stattic effectively restored the sensitive of RPL22L1 induced TMZ resistance in vitro and in vivo. Our study identified a novel candidate oncogene RPL22L1 which promoted the GBM malignancy through STAT3 pathway. And we highlighted that Stattic combined with TMZ therapy might be an effective treatment strategy in RPL22L1 high-expressed GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Oncogenes , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
13.
J Cheminform ; 15(1): 111, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986007

RESUMO

In chemistry-related disciplines, a vast repository of molecular structural data has been documented in scientific publications but remains inaccessible to computational analyses owing to its non-machine-readable format. Optical chemical structure recognition (OCSR) addresses this gap by converting images of chemical molecular structures into a format accessible to computers and convenient for storage, paving the way for further analyses and studies on chemical information. A pivotal initial step in OCSR is automating the noise-free extraction of molecular descriptions from literature. Despite efforts utilising rule-based and deep learning approaches for the extraction process, the accuracy achieved to date is unsatisfactory. To address this issue, we introduce a deep learning model named YoDe-Segmentation in this study, engineered for the automated retrieval of molecular structures from scientific documents. This model operates via a three-stage process encompassing detection, mask generation, and calculation. Initially, it identifies and isolates molecular structures during the detection phase. Subsequently, mask maps are created based on these isolated structures in the mask generation stage. In the final calculation stage, refined and separated mask maps are combined with the isolated molecular structure images, resulting in the acquisition of pure molecular structures. Our model underwent rigorous testing using texts from multiple chemistry-centric journals, with the outcomes subjected to manual validation. The results revealed the superior performance of YoDe-Segmentation compared to alternative algorithms, documenting an average extraction efficiency of 97.62%. This outcome not only highlights the robustness and reliability of the model but also suggests its applicability on a broad scale.

14.
Planta Med ; 89(15): 1468-1482, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37541437

RESUMO

Boswellia is a traditional medicine for bruises and injuries. Its main active ingredient, acetyl-11-keto-beta-boswellic acid, has antioxidant and antiapoptotic effects. In this experiment, we used Sprague-Dawley rats to make a sciatic nerve injury model to detect the transcription factor NF-E2-related factor 2/heme oxygenase 1 signaling pathway and apoptosis, combined with clinical indicators, for testing whether acetyl-11-keto-beta-boswellic acid can reduce oxidative stress and promote sciatic nerve repair. Our results showed that acetyl-11-keto-beta-boswellic acid administration promoted myelin regeneration and functional recovery in the rat sciatic nerve, reduced lipid peroxidation levels, upregulated the expression of various antioxidant enzymes and enhanced enzyme activity, decreased the expression levels of apoptosis-related proteins, and promoted nuclear translocation of the transcription factor NF-E2-related factor 2 protein. In vitro studies revealed that acetyl-11-keto-beta-boswellic acid reduced H2O2-induced reactive oxygen species production, restored mitochondrial membrane potential, upregulated the expression of various antioxidant enzymes, and downregulated apoptosis-related indicators in Schwann cells, and these therapeutic effects of acetyl-11-keto-beta-boswellic acid were reversed after ML385 treatment in Schwann cells. In summary, acetyl-11-keto-beta-boswellic acid alleviates oxidative stress and apoptosis caused by sciatic nerve injury in rats by activating the transcription factor NF-E2-related factor 2/heme oxygenase 1 signaling pathway, promotes the recovery of sciatic nerve function in rats, and is a promising therapeutic agent to promote sciatic nerve repair by alleviating excessive oxidative stress.


Assuntos
Heme Oxigenase-1 , Triterpenos , Ratos , Animais , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Transdução de Sinais , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/metabolismo , Nervo Isquiático/metabolismo , Células de Schwann/metabolismo
15.
Nat Commun ; 14(1): 4904, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580320

RESUMO

In this multicenter, single-arm phase 2 trial (ChiCTR1900024428), patients with locally advanced gastric/gastroesophageal junction cancers receive one cycle of sintilimab (anti-PD1) and chemotherapy (S-1 and nab-paclitaxel), followed by 5 weeks of concurrent chemoradiotherapy and sintilimab, and another cycle of sintilimab and chemotherapy thereafter. Surgery is preferably scheduled within one to three weeks, and three cycles of adjuvant sintilimab and chemotherapy are administrated. The primary endpoint is the pathological complete response. Our results meet the pre-specified primary endpoint. Thirteen of 34 (38.2%) enrolled patients achieve pathological complete response (95% CI: 22.2-56.4). The secondary objectives include disease-free survival (DFS), major pathological response, R0 resection rate, overall survival (OS), event-free survival (EFS), and safety profile. The median DFS and EFS were 17.0 (95%CI: 11.1-20.9) and 21.1 (95%CI: 14.7-26.1) months, respectively, while the median OS was not reached, and the 1-year OS rate was 92.6% (95%CI: 50.1-99.5%). Seventeen patients (50.0%) have grade ≥3 adverse events during preoperative therapy. In prespecified exploratory biomarker analysis, CD3+ T cells, CD56+ NK cells, and the M1/M1 + M2-like macrophage infiltration at baseline are associated with pathological complete response. Here, we show the promising efficacy and manageable safety profile of sintilimab in combination with concurrent chemoradiotherapy for the perioperative treatment of locally advanced gastric/gastroesophageal junction adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Terapia Neoadjuvante/métodos , Quimioterapia Adjuvante/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Gástricas/patologia , Quimiorradioterapia/métodos , Junção Esofagogástrica/patologia , Adenocarcinoma/patologia
16.
ACS Appl Mater Interfaces ; 15(36): 42585-42593, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37649346

RESUMO

The reasonable design of atomically dispersed Ni-Nx sites in porous carbon nanostructures is an efficient strategy to enhance the electrochemical CO2 reduction reaction (CO2RR) catalytic activity. In this work, atomically dispersed Ni-Nx sites on hierarchically porous carbon catalysts (HP-Ni-NC) were fabricated by a facile NaCl template-assisted pyrolysis method. The catalysts exhibit a large specific surface area and a hierarchical porous structure, facilitating the exposure of numerous active sites and the mass/electron transport during the CO2RR. Consequently, the CO Faradaic efficiency maintained over 90% in a wide potential window on the optimized HP-Ni-NC-2 catalyst. The CO partial current achieved 15.2 mA cm-2 at -0.9 V (vs reversible hydrogen electrode) in a H-cell. Furthermore, the current density can achieve 250 mA cm-2 at a cell voltage of 3.11 V in a membrane electrode assembly electrolyzer, demonstrating great promise for commercial-scale application. This study presents a facile approach to synthesizing hierarchically porous structure single-atom catalysts with superior catalytic performance toward CO2RR.

17.
Phys Chem Chem Phys ; 25(26): 17320-17336, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345723

RESUMO

Theoretical investigations on the kinetics of decomposition and isomerization reactions for five types of branched pentanol radicals are carried out in this work. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all reactants, transition states, and products, while the hindrance potentials for the lower frequency modes in all of the species were obtained through a relaxed scan with an increment of 10° at the M06-2X/6-31G level of theory. Single-point energies of all species were determined at the QCISD(T)/cc-pVDZ, TZ level of theories with basis set corrections from MP2/cc-pVDZ, TZ, QZ methods. The RRKM/master equation was solved to calculate the pressure- and temperature-dependent rate coefficients for all channels in the pressure range of 0.01-100 atm over 250-2000 K. Pressure and temperature-dependent branching fractions of key species produced from pentanol radicals show that most of the pentanol radical isomers tend to isomerize to alkoxy radicals via a six-membered-ring or five-membered-ring transition state at low temperatures, producing ketones or aldehydes. At higher temperatures, the ß-scission reactions are the main reaction channels for the consumption of pentanol radicals. A weak pressure dependence has been found for all isomerization reactions, and it becomes more and more important as pressure increases. The pressure dependence trends are different for the ß-scission reactions of different branched pentanol radicals. In part I, the results for branched pentanol radical isomers are presented in detail, while in part II the results for linear pentanol radical isomers will be discussed.

18.
BMC Cancer ; 23(1): 576, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349711

RESUMO

BACKGROUND: To the best of our knowledge, no previous studies have explored the relationship between visceral obesity and malnutrition. Therefore, this study has aimed to investigate the association between them in patients with rectal cancer. METHODS: Patients with rectal cancer who underwent proctectomy were included. Malnutrition was defined according to the Global Leadership Initiative on Malnutrition (GLIM). Visceral obesity was measured using computed tomography (CT). The patients were classified into four groups according to the presence of malnutrition or visceral obesity. Univariate and multivariate logistic regression analyses were performed to evaluate risk factors for postoperative complications. Univariate and multivariate cox regression analyses were performed to evaluate the risk factors for overall survival (OS) and cancer-specific survival (CSS). Kaplan-Meier survival curves and log-rank tests were performed for the four groups. RESULTS: This study enrolled 624 patients. 204 (32.7%) patients were included in the well-nourished non-visceral obesity (WN) group, 264 (42.3%) patients were included in the well-nourished visceral obesity (WO) group, 114 (18.3%) patients were included in the malnourished non-visceral obesity (MN) group, and 42 (6.7%) patients were included in the malnourished visceral obesity (MO) group. In the multivariate logistic regression analysis, the Charlson comorbidity index (CCI), MN, and MO were associated with postoperative complications. In the multivariate cox regression analysis, age, American Society of Anesthesiologists (ASA) score, tumor differentiation, tumor node metastasis (TNM), and MO were associated with worsened OS and CSS. CONCLUSIONS: This study demonstrated that the combination of visceral obesity and malnutrition resulted in higher postoperative complication and mortality rates and was a good indicator of poor prognosis in patients with rectal cancer.


Assuntos
Desnutrição , Protectomia , Neoplasias Retais , Humanos , Estudos Retrospectivos , Neoplasias Retais/complicações , Neoplasias Retais/cirurgia , Protectomia/efeitos adversos , Protectomia/métodos , Desnutrição/complicações , Desnutrição/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Obesidade , Obesidade Abdominal/complicações , Avaliação Nutricional , Estado Nutricional
19.
J Ethnopharmacol ; 314: 116576, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142145

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Camellia nitidissima C.W.Chi (CNC), an ethnomedicine mainly distributed in Southern China's Guangxi Zhuang Autonomous Region, is known as "Panda in plants" and "Camellias Queen" due to its golden blossom. CNC has been applied as a traditional folk medicine in cancer therapy. AIM OF THE STUDY: This study utilized network pharmacology analysis combined with experimental validation to identify the substance basis and potential molecular mechanism of CNC against lung cancer. MATERIALS AND METHODS: The active ingredients of CNC were identified based on published literature. The associated potential targets of CNC in lung cancer treatment were predicted using integrated network pharmacology analysis and molecular docking. The underlying molecular mechanism of CNC in lung cancer were validated in human lung cancer cell lines. RESULTS: A total of 30 active ingredients and 53 targets of CNC were screened. An enrichment analysis of Gene Ontology (GO) revealed that the effects of CNC in lung cancer mainly involve protein binding, regulation of cell proliferation and apoptosis, and signal transduction. KEGG pathways analysis suggested that CNC might exert cancer suppression effects mainly through pathways in cancer, PI3K/AKT signaling pathway. Molecular docking revealed that CNC has high affinity for binding of EGFR, SRC, AKT1, and CCND1 to the key active ingredients including luteolin, kaempferol, quercetin, eriodictyol and 3'4-O-dimethylcedrusin. In in vitro experiments, CNC played the inhibitory roles in lung cancer cells by inducing cell apoptosis, causing G0/G1 and S cell cycle arrest, increasing intracellular ROS levels, and promoting the apoptotic proteins Bax and Caspase-3. Meanwhile, CNC also regulated the expression of core proteins EGFR, SRC, and AKT. CONCLUSION: These results comprehensively clarified the associated substance basis and underlying molecular mechanism of CNC against lung cancer, which would be contributed to develop promising anti-cancer pharmaceuticals or therapeutic approaches for lung cancer therapy.


Assuntos
Camellia , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , China , Neoplasias Pulmonares/tratamento farmacológico , Receptores ErbB , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
20.
Clin Exp Ophthalmol ; 51(5): 453-461, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084233

RESUMO

BACKGROUND: Current modalities for diagnosing carotid cavernous fistula (CCF) are inaccurate in analysing retinal microcirculations and nerve fibre changes. Retinal microvascular and neural alterations occur in CCF patients and can be quantitatively measured using optical coherence tomography angiography (OCTA). We measured the neurovascular changes in the eyes of CCF patients and used OCTA as a supplementary method. METHODS: This cross-sectional study studied 54 eyes of 27 unilateral CCF subjects and 54 eyes of 27 healthy age- and sex-matched controls. OCTA parameters in the macula and optic nerve head (ONH) were analysed using a one-way analysis of variance with further Bonferroni corrections. Parameters with statistical significance were included in a multivariable binary logistic regression analysis and receiver operating characteristic (ROC) curves were generated. RESULTS: There was significantly less deep-vessel density (DVD) and ONH-associated capillary density in both eyes of CCF patients than in controls, while the differences between the affected and contralateral eyes were insignificant. The retinal nerve fibre layer and ganglion cell complex thickness were lower in the affected eyes than in the contralateral or controlled eyes. ROC curves identified DVD and ONH-associated capillary density as significant parameters in both eyes of CCF patients. CONCLUSION: The retinal microvascular circulation was affected in both eyes of unilateral CCF patients. Microvascular alterations occurred before retinal neural damage. This quantitative study suggests a supplementary measurement for diagnosing CCF and detecting early neurovascular impairments.


Assuntos
Fístula Carótido-Cavernosa , Disco Óptico , Humanos , Tomografia de Coerência Óptica/métodos , Fístula Carótido-Cavernosa/diagnóstico , Estudos Transversais , Angiografia , Disco Óptico/irrigação sanguínea , Angiofluoresceinografia/métodos , Vasos Retinianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA