Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Virulence ; 15(1): 2350893, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38725096

RESUMO

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Lisossomos , Fosfatidilinositol 3-Quinases , Fosfatos de Fosfatidilinositol , Canais de Potencial de Receptor Transitório , Vacúolos , Coxiella burnetii/metabolismo , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/genética , Vacúolos/microbiologia , Vacúolos/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia , Fosfatos de Fosfatidilinositol/metabolismo , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Febre Q/microbiologia , Células HeLa , Interações Hospedeiro-Patógeno
2.
Eur J Nutr ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446227

RESUMO

BACKGROUND: We aim to report the latest pooled analyses to evaluate the additive efficacy and safety of probiotics in the treatment of ulcerative colitis (UC). METHODS: We systematically searched the relevant literature investigating the efficacy and/or safety of probiotics in patients with UC from PubMed, Embase and Web of Science up to January 2023. Two researchers independently screened the literature, extracted data, and evaluated the quality of the included studies according to the inclusion and exclusion criteria. Any discrepancies throughout these processes were solved by consensus. All statistical analyses were performed by Review Manager version 5.4 and Stata version 15.0. RESULTS: A total of 13 articles were included in the pooled analyses, and the studies were all randomized controlled trials with a total of 930 patients. There were no significant differences between the probiotics and placebo groups concerning demographic and baseline characteristics. For patients with active UC, the probiotic group boosted the remission rate by 87% compared to the placebo group, but failed to reach a statistical difference (OR: 1.87; 95% CI 0.98, 3.57; P = 0.06, I2 = 67%); furthermore, there were no statistical differences in maintenance of clinical remission, clinical response, change in UCDAI scores, or mucosal healing outcomes in the probiotic group compared to the placebo group. For patients in clinical remission, the clinical relapse rates were significantly lower in the probiotic group than in the placebo group (OR: 0.34; 95% CI 0.14, 0.79; P = 0.01). Moreover, this study did not observe a significant difference between the two groups for general adverse events rate (OR: 1.98; 95% CI 0.69, 5.68; P = 0.20). CONCLUSION: Probiotic-assisted therapy may be effective in inhibiting UC recurrence in patients in clinical remission without increasing the risk of treatment-related adverse events; furthermore, probiotics may increase the rate of clinical remission in patients with active UC. However, caution is needed when interpreting the clinical efficacy of probiotics in improving the clinical outcome of patients with active UC.

3.
Microbiol Spectr ; 12(4): e0369523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358243

RESUMO

Rickettsia rickettsii (R. rickettsii), the causative agent of Rocky Mountain spotted fever (RMSF), is the most pathogenic member among Rickettsia spp. Previous studies have shown that tripartite motif-containing 56 (TRIM56) E3 ligase-induced ubiquitination of STING is important for cytosolic DNA sensing and type I interferon production to induce anti-DNA viral immunity, but whether it affects intracellular replication of R. rickettsii remains uncharacterized. Here, we investigated the effect of TRIM56 on HeLa and THP-1 cells infected with R. rickettsii. We found that the expression of TRIM56 was upregulated in the R. rickettsii-infected cells, and the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while R. rickettsii replication was enhanced in the TRIM56-silenced host cells with the reduced phosphorylation of IRF3 and STING and the increased production of interferon-ß. In addition, the mutation of the TRIM56 E3 ligase catalytic site impairs the inhibitory function against R. rickettsii in HeLa cells. Altogether, our study discovers that TRIM56 is a host restriction factor of R. rickettsii by regulating the cGAS-STING-mediated signaling pathway. This study gives new evidence for the role of TRIM56 in the innate immune response against intracellular bacterial infection and provides new therapeutic targets for RMSF. IMPORTANCE: Given that Rickettsia rickettsii (R. rickettsii) is the most pathogenic member within the Rickettsia genus and serves as the causative agent of Rocky Mountain spotted fever, there is a growing need to explore host targets. In this study, we examined the impact of host TRIM56 on R. rickettsii infection in HeLa and THP-1 cells. We observed a significant upregulation of TRIM56 expression in R. rickettsii-infected cells. Remarkably, the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while silencing TRIM56 enhanced bacterial replication accompanied by reduced phosphorylation of IRF3 and STING, along with increased interferon-ß production. Notably, the mutation of the TRIM56's E3 ligase catalytic site did not impede R. rickettsii replication in HeLa cells. Collectively, our findings provide novel insights into the role of TRIM56 as a host restriction factor against R. rickettsii through the modulation of the cGAS-STING signaling pathway.


Assuntos
Interferon Tipo I , Febre Maculosa das Montanhas Rochosas , Humanos , Rickettsia rickettsii/metabolismo , Células HeLa , Ubiquitina-Proteína Ligases/genética , Interferon beta/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas com Motivo Tripartido/genética
4.
Parasitology ; 151(4): 370-379, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38343157

RESUMO

Cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) is a distinctive member of the serine­threonine protein AGC kinase family and an effective kinase for cAMP signal transduction. In recent years, scuticociliate has caused a lot of losses in domestic fishery farming, therefore, we have carried out morphological and molecular biological studies. In this study, diseased guppies (Poecilia reticulata) were collected from an ornamental fish market, and scuticociliate Philaster apodigitiformis Miao et al., 2009 was isolated. In our prior transcriptome sequencing research, we discovered significant expression of the ß-PKA gene in P. apodigitiformis during its infection process, leading us to speculate its involvement in pathogenesis. A complete sequence of the ß-PKA gene was cloned, and quantified by quantitative reverse transcription-polymerase chain reaction to analyse or to evaluate the functional characteristics of the ß-PKA gene. Morphological identification and phylogenetic analysis based on small subunit rRNA sequence, infection experiments and haematoxylin­eosin staining method were also carried out, in order to study the pathological characteristics and infection mechanism of scuticociliate. The present results showed that: (1) our results revealed that ß-PKA is a crucial gene involved in P. apodigitiformis infection in guppies, and the findings provide valuable insights for future studies on scuticociliatosis; (2) we characterized a complete gene, ß-PKA, that is generally expressed in parasitic organisms during infection stage and (3) the present study indicates that PKA plays a critical role in scuticociliate when infection occurs by controlling essential steps such as cell growth, development and regulating the activity of the sensory body structures and the irritability system.


Assuntos
Aquicultura , Proteínas Quinases Dependentes de AMP Cíclico , Doenças dos Peixes , Filogenia , Poecilia , Animais , Poecilia/parasitologia , Poecilia/genética , Doenças dos Peixes/parasitologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária , Sequência de Aminoácidos
5.
Nutrients ; 16(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38398861

RESUMO

We previously demonstrated that orally supplemented Bifidobacterium breve MCC1274 (B. breve MCC1274) mitigated Alzheimer's disease (AD) pathologies in both 7-month-old AppNL-G-F mice and wild-type mice; thus, B. breve MCC1274 supplementation might potentially prevent the progression of AD. However, the possibility of using this probiotic as a treatment for AD remains unclear. Thus, we investigated the potential therapeutic effects of this probiotic on AD using 17-month-old AppNL-G-F mice with memory deficits and amyloid beta saturation in the brain. B. breve MCC1274 supplementation ameliorated memory impairment via an amyloid-cascade-independent pathway. It reduced hippocampal and cortical levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase as well as heat shock protein 90, which might have suppressed tau hyperphosphorylation and chronic stress. Moreover, B. breve MCC1274 supplementation increased hippocampal synaptic protein levels and upregulated neuronal activity. Thus, B. breve MCC1274 supplementation may alleviate cognitive dysfunction by reducing chronic stress and tau hyperphosphorylation, thereby enhancing both synaptic density and neuronal activity in 17-month-old AppNL-G-F mice. Overall, this study suggests that B. breve MCC1274 has anti-AD effects and can be used as a potential treatment for AD.


Assuntos
Doença de Alzheimer , Bifidobacterium breve , Aplicativos Móveis , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Bifidobacterium breve/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Transtornos da Memória/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
6.
Parasitol Res ; 123(1): 104, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240890

RESUMO

Tetrahymenosis is caused by the ciliated protozoan Tetrahymena and is responsible for serious economic losses to the aquaculture industry worldwide. However, information regarding the molecular mechanism leading to tetrahymenosis is limited. In previous transcriptome sequencing work, it was found that one of the two ß-tubulin genes in T. pyriformis was significantly expressed in infected fish, we speculated that ß-tubulin is involved in T. pyriformis infecting fish. Herein, the potential biological function of the ß-tubulin gene in Tetrahymena species when establishing infection in guppies was investigated by cloning the full-length cDNA of this T. pyriformis ß-tubulin (BTU1) gene. The full-length cDNA of T. pyriformis BTU1 gene was 1873 bp, and the ORF occupied 1134 bp, whereas 5' UTR 434 bp, and 3' UTR 305 bp whose poly (A) tail contained 12 bases. The predicted protein encoded by T. pyriformis BTU1 gene had a calculated molecular weight of 42.26 kDa and pI of 4.48. Moreover, secondary structure analysis and tertiary structure prediction of BTU1 protein were also conducted. In addition, morphology, infraciliature, phylogeny, and histopathology of T. pyriformis isolated from guppies from a fish market in Harbin were also investigated. Furthermore, qRT-PCR analysis and experimental infection assays indicated that the expression of BTU1 gene resulted in efficient cell proliferation during infection. Collectively, our data revealed that BTU1 is a key gene involved in T. pyriformis infection in guppies, and the findings discussed herein provide valuable insights for future studies on tetrahymenosis.


Assuntos
Poecilia , Tetrahymena pyriformis , Tetrahymena , Animais , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Tetrahymena/genética , Poecilia/genética , DNA Complementar/metabolismo , Tetrahymena pyriformis/genética , Tetrahymena pyriformis/metabolismo , RNA Mensageiro/metabolismo
7.
Int J Nanomedicine ; 18: 7901-7922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148856

RESUMO

Acute liver injury (AIL), a fatal clinical disease featured with a swift deterioration of hepatocyte functions in the short term, has emerged as a serious public health issues that warrants attention. However, the effectiveness of existing small molecular antioxidants and anti-inflammatory medications in alleviating AIL remains uncertain. The unique inherent structural characteristics of liver confer it a natural propensity for nanoparticle capture, which present an opportunity to exploit in the formulation of nanoscale therapeutic agents, enabling their selective accumulation in the liver and thereby facilitating targeted therapeutic interventions. Significantly increased reactive oxygen species (ROS) accumulation and inflammation response have been evidenced to play crucial roles in occurrence and development of AIL. Nanozymes with ROS-scavenging capacities have demonstrated considerable promise in ROS elimination and inflammation regulation, thereby offering an appealing therapeutic instrument for the management of acute liver injury. In this review, the mechanisms of different type of ALI were summarized. In addition, we provide a comprehensive summary and review of the available ROS-scavenging nanozymes, including transition metal-based nanozymes, noble metal nanozymes, carbon-based nanozymes, and some other nanozymes. Furthermore, the challenges still need to be solved in the field of ROS-scavenging nanozymes for ALI alleviation are also discussed.


Assuntos
Hepatócitos , Fígado , Humanos , Espécies Reativas de Oxigênio , Inflamação , Antioxidantes
8.
Amino Acids ; 55(11): 1563-1572, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37736814

RESUMO

Diabetic kidney disease (DKD), a highly prevalent complication of diabetes mellitus, is a major cause of mortality in patients. However, identifying circulatory markers to diagnose DKD requires a thorough understanding of the metabolic mechanisms of DKD. In this study, we performed ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) to reveal altered metabolic profiles of amino acids (AAs) in patients with DKD. We found decreased plasma levels of histidine and valine, increased urine levels of proline, decreased urine levels of histidine and valine, and increased saliva levels of arginine in patients with DKD compared with the levels in patients with type 2 diabetes mellitus (T2DM) and in healthy controls. Our analyses of the key metabolites and metabolic enzymes involved in histidine and valine metabolism indicated that the AAs level alterations may be due to enhanced carnosine hydrolysis, decreased degradation of homocarnosine and anserine, enhanced histidine methylation, and systemic enhancement of valine metabolism in patients with DKD. Notably, we generated a distinct diagnostic model with an AUC of 0.957 and an accuracy up to 92.2% on the basis of the AA profiles in plasma, urine and saliva differing in patients with DKD using logistic regression and receiver operating characteristic analyses. In conclusion, our results suggest that altered AA metabolic profiles are associated with the progression of DKD. Our DKD diagnostic model on the basis of AA levels in plasma, urine, and saliva may provide a theoretical basis for innovative strategies to diagnose DKD that may replace cumbersome kidney biopsies.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/metabolismo , Aminoácidos , Diabetes Mellitus Tipo 2/metabolismo , Histidina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Aminas , Valina
9.
Ecol Evol ; 13(9): e10504, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37680958

RESUMO

Tetrahymenosis, caused by about 10 Tetrahymena species, is an emerging problem inflicting a significant economic loss on the aquaculture industry worldwide. However, in the order Tetrahymenida, there are many unresolved evolutionary relationships among taxa. Here we report 21 new sequences, including SSU-rRNA, ITS1-5.8S-ITS2 rRNA and LSU-rRNA, genes of 10 facultative parasitic Tetrahymena associated with tetrahymenosis, and conduct phylogenetic analyses based on each individual gene and a three-gene concatenated dataset. The main findings are: (1) All the parasitic and facultative parasitic species cluster in borealis group. (2) With the addition of new sequences, Tetrahymena is still divided into three groups, namely the "borealis group", the "australis group," and the "paravorax group." (3) the cluster pattern of all the newly sequenced facultative parasitic Tetrahymena species shows that members of the "borealis" group may be more susceptible to parasitism. (4) phylogeny based on concatenated genes show that T. pyriformis, T. setosa, and T. leucophrys have close relationship.

10.
J Biochem ; 174(5): 409-420, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37488092

RESUMO

Amyloid-ß (Aß) accumulation caused by an imbalance of the production and clearance of Aß in the brain is associated with the development of Alzheimer's disease (ad). Apolipoprotein E (ApoE) (the strongest genetic risk factor) enhances Aß clearance, preventing Aß deposition. Sirtuin 2 (Sirt2) is an NAD+-dependent histone deacetylase and its inhibition has been reported to ameliorate memory impairment in ad-like model mice. However, the role of Sirt2 in ApoE secretion is unknown. Here, we found that inhibition of Sirt2 activity in primary cultured astrocytes and BV2 cells decreased ApoE secretion, resulting in the accumulation of intracellular ApoE and inhibiting extracellular Aß degradation. However, the reduction of Sirt2 protein level by Sirt2 siRNA decreased ApoE protein level, which ultimately reduces ApoE secretion. In addition, the knockdown of Sirt2 in the HEK293-APP cells also decreased levels of intracellular ApoE leading to reduction of its secretion, which is accompanied by increased Aß levels without altering APP and APP processing enzymes. Our findings provide a novel role of Sirt2 in ApoE secretion.


Assuntos
Doença de Alzheimer , Sirtuína 2 , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrócitos , Encéfalo/metabolismo , Células HEK293 , Camundongos Transgênicos , Microglia/metabolismo , Sirtuína 2/metabolismo
12.
Front Pharmacol ; 14: 1139137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969832

RESUMO

Aims: Our study focused on whether macrophages ferroptosis is associated with the pathogenesis of chronic obstructive pulmonary disease (COPD) or not. Main methods: We first identified macrophage module genes by weighted gene co-expression network analysis (WGCNA) in RNA sequencing (RNA-seq) date from COPD, and then identified macrophage marker genes by comprehensive analysis of single-cell RNA sequencing (scRNA-seq) data from COPD macrophages. There were 126 macrophage marker genes identified, and functional enrichment analyses indicated that ferroptosis pathway genes were significantly enriched. Secondly, we identified eight macrophage ferroptosis related genes and based on these eight genes, we performed co-expression analysis and drug prediction. Thirdly, two biomarkers (SOCS1 and HSPB1) were screened by the least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine-recursive feature elimination (SVM-RFE) and established an artificial neural network (ANN) for diagnosis. Subsequently, the biomarkers were validated in the dataset and validation set. These two biomarkers were then subjected to single gene-gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) analysis, and the ceRNA network was constructed. Finally, we carried out molecular validation with COPD models in vitro for cell counting kit-8 (CCK8) experiments, Western blot and quantitative real-time PCR (qRT-PCR) analysis and transmission electron microscopy (TEM). Key findings: This study revealed the vital role of macrophage ferroptosis in COPD, and novel biomarkers (SOCS1 and HSPB1) may be involved in the pathogenesis of COPD by regulating macrophage ferroptosis. Significance: Taken together, our results suggest that targeting SOCS1 and HSPB1 could treat COPD by inhibiting macrophage ferroptosis.

13.
Small ; 19(19): e2206408, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759965

RESUMO

Developing nanomedicines with superior reactive oxygen species (ROS) scavenging capability has emerged as a promising strategy in treating ROS-related diseases, for example, drug-induced liver injury. However, designing nanoscavengers with the self-propelling ability to scavenge ROS actively remains challenging. Here, a self-propelled silica-supported ultrasmall gold nanoparticles-tannic acid hybrid nanozyme (SAuPTB) is designed that can effectively alleviate acetaminophen (APAP)-induced liver injury by scavenging excessive ROS and regulating inflammation. SAuPTB exhibits multienzyme activity and displays significantly enhanced diffusion under hydrogen peroxide (H2 O2 ). This in vitro research shows that SAuPTB can effectively eliminate ROS, increasing the viability of H2 O2 -stimulated cells and reducing the cytotoxicity of APAP/H2 O2 -treated AML12 cells. The in vivo studies show that SAuPTB can accumulate at inflammatory sites in mouse liver, resulting in the decrease of alanine aminotransferase, aspartate aminotransferase, and ROS, reduction in pro-inflammatory cytokines and chemokines, hence reduced hepatocyte necrosis, liver injury, and mortality. Furthermore, SAuPTB activates the nuclear erythroid 2-related factor 2 pathway to upregulate antioxidative genes and reduce oxidative stress. Finally, the liver shows decreased high mobility group box 1 and F4/80+ macrophages, suggesting an anti-inflammatory response. This work provides a novel design strategy of nanozymes for ROS-related disease treatment.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas Metálicas , Animais , Camundongos , Acetaminofen/farmacologia , Anti-Inflamatórios/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ouro , Espécies Reativas de Oxigênio/metabolismo
14.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769062

RESUMO

We previously demonstrated that the Alzheimer's disease (AD)-like model mice, Tg2576, housed at a high ambient temperature of 30 °C for 13 months, exhibited increased body temperature, which increased amyloid-ß (Aß) levels and tau stability, leading to tau phosphorylation and ultimately inducing memory impairment. Here, we aimed to exclude the possible effect of environmental factors associated with the difference in ambient temperature (23 °C vs. 30 °C) and to further clarify the effects of elevated body temperature on AD-like pathologies. We generated uncoupling protein 1 (UCP1) deletion in Tg2576 mice, Tg2576/UCP1-/-, because UCP1 deletion mice show a sustained rise in body temperature at normal room temperature. As expected, the body temperature in Tg2576/UCP1-/- mice was higher than that in Tg2576/ UCP1+/+ mice at 23 °C, which was accompanied by upregulated Aß levels due to increased ß-secretase (BACE1) and decreased neprilysin (NEP) protein levels in the brains of Tg2576/UCP1-/- mice compared with those in the Tg2576/ UCP1+/+ mice. Elevated body temperature also increased total tau levels, leading to enhanced phosphorylation, heat shock protein induction, and activated tau kinases. Furthermore, elevated body temperature enhanced glial activation and decreased synaptic protein levels in the brain. Taken together, these findings demonstrate that elevated body temperatures exacerbate AD-like pathologies.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Temperatura Corporal , Proteína Desacopladora 1/metabolismo , Camundongos Transgênicos , Ácido Aspártico Endopeptidases/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Animais de Doenças
15.
J Alzheimers Dis Rep ; 6(1): 663-675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506484

RESUMO

Background: Tooth loss is closely associated with Alzheimer's disease (AD). Previously, we reported that tooth loss induced memory impairment in amyloid precursor protein knock-in mice by decreasing neuronal activity and synaptic protein levels and increasing glial activation, neuroinflammation, and pyramidal neuronal cell loss without altering amyloid-ß levels in the hippocampus. However, the effects of tooth loss in young wild-type mice have not been explored yet. Objective: We investigated the effects of tooth loss on memory impairment, neuronal activity, synaptic protein levels, glial activation, and pyramidal neuronal cell loss in young wild-type mice. Methods: Two-month-old wild-type mice were randomly divided into control and tooth loss groups. In the tooth loss group, maxillary molar teeth on both sides were extracted, whereas no teeth were extracted in the control group. Two months after tooth extraction, we performed a novel object recognition test to evaluate memory function. Glial activation, neuronal activity, synaptic protein levels, and the number of pyramidal neurons were evaluated using immunofluorescence staining, immunohistochemistry, and western blotting. Results: The tooth loss group exhibited memory impairment and decreased neuronal activity and the levels of synaptic proteins in both the hippocampus and cortex. Moreover, tooth loss increased the activation of phosphorylated c-Jun N-terminal kinase (JNK), heat shock protein 90 (HSP90), and glial activation and reduced the number of pyramidal neurons in the hippocampus. Conclusion: Tooth loss in the young wild-type mice will attenuate neuronal activity, decrease synaptic protein levels, and induce pyramidal neuronal loss, and eventually lead to memory impairment.

16.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235015

RESUMO

Surfactants are one of the major pollutants in laundry powder, which have an impact on the environment and human health. Carbon quantum dots (CQDs) are spherical zero-dimensional fluorescent nanoparticles with great potential for fluorescent probing, electrochemical biosensing and ion sensing. Herein, a bottom-up approach was developed for the synthesis of CQDs from biomass to detect laundry detergent and laundry powder. Waste chicken bones were used as carbon precursors after being dried, crushed and reacted with pure water at 180 °C for 4 h to generate CQDs, which exhibited a monodisperse quasi-spherical structure with an average particle size of 3.2 ± 0.2 nm. Functional groups, including -OH, C=O, C=C and C-O, were identified on the surface of the prepared CQDs. The optimal fluorescence excitation wavelength of the yellow-brown CQDs was 380 nm, with a corresponding emission peak at 465 nm. CQDs did not significantly increase cell death in multiple cell lines at concentrations of 200 µg·mL-1. Fluorescence enhancement of CQDs was observed after addition of sodium dodecyl benzene sulphonate, a major anionic surfactant in laundry powder. A linear relationship between fluorescence enhancement CQDs and the concentration of laundry powder was established. Thus, a hydrothermal method was developed to generate CQDs from waste biomass that may be used as a fluorescent probe to detect laundry powder.


Assuntos
Poluentes Ambientais , Pontos Quânticos , Carbono/química , Detergentes , Corantes Fluorescentes/química , Humanos , Pós , Pontos Quânticos/química , Água
17.
J Alzheimers Dis ; 89(4): 1413-1425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36057824

RESUMO

BACKGROUND: We previously reported the effects of a probiotic strain, Bifidobacterium breve MCC1274, in improving cognitive function in preclinical and clinical studies. Recently, we demonstrated that supplementation of this strain led to decreased amyloid-ß production, attenuated microglial activation, and suppressed inflammation reaction in the brain of APP knock-in (AppNL - G - F) mice. OBJECTIVE: In this study, we investigated the plasma metabolites to reveal the mechanism of action of this probiotic strain in this Alzheimer's disease (AD)-like model. METHODS: Three-month-old mice were orally supplemented with B. breve MCC1274 or saline for four months and their plasma metabolites were comprehensively analyzed using CE-FTMS and LC-TOFMS. RESULTS: Principal component analysis showed a significant difference in the plasma metabolites between the probiotic and control groups (PERMANOVA, p = 0.03). The levels of soy isoflavones (e.g., genistein) and indole derivatives of tryptophan (e.g., 5-methoxyindoleacetic acid), metabolites with potent anti-oxidative activities were significantly increased in the probiotic group. Moreover, there were increased levels of glutathione-related metabolites (e.g., glutathione (GSSG)_divalent, ophthalmic acid) and TCA cycle-related metabolites (e.g., 2-Oxoglutaric acid, succinic acid levels) in the probiotic group. Similar alternations were observed in the wild-type mice by the probiotic supplementation. CONCLUSION: These results suggest that the supplementation of B. breve MCC1274 enhanced the bioavailability of potential anti-oxidative metabolites from the gut and addressed critical gaps in our understanding of the gut-brain axis underlying the mechanisms of the probiotic action of this strain in the improvement of cognitive function.


Assuntos
Bifidobacterium breve , Animais , Bifidobacterium breve/metabolismo , Suplementos Nutricionais , Genisteína/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Indóis , Ácidos Cetoglutáricos/metabolismo , Camundongos , Ácido Succínico/metabolismo , Triptofano
18.
J Environ Manage ; 324: 116323, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36166869

RESUMO

With the increase of the azo pigment wastewater, it is necessary to seek an efficient and sustainable treatment method to address issues of damaging water ecosystems and human health. In this work, organic representing azo dye Acid Orange 7 (AO7), heavy metal representing hexavalent chromium (Cr(VI)), and inorganic representing ammonia nitrogen (NH4+-N) were selected to roughly simulate the azo pigment wastewater. The simultaneous decontamination of multi-target pollutants by 700 °C pyrolyzed peanut shell biochar (BC) with persulfate (PDS) was evaluated. The results showed that AO7, Cr(VI) and NH4+-N could finally reach 100%, 85% and 30% removal ratios separately in the BC/PDS/mixed pollutants system under certain basic conditions. Functional groups (hydroxyl groups (C-OH) and carboxylic ester/lactone groups (O-C=O)) were found by XPS as competing sites for adsorption and activation and were gradually consumed as the reaction proceeded. Combining a series of experiments results and EPR analysis, it was found that AO7 removal worked best and it relied on both the radical pathway (including SO4•-, •OH, O2-•, but not 1O2) and adsorption. Cr(VI) was mainly adsorbed and reduced by BC surface to form Cr(OH)3 and Cr2O3, and the remaining part could be reduced by O2-•, followed by •OH. NH4+-N was removed primarily by the radical same as AO7. Meanwhile, the three target pollutants have a co-competitive mechanism. Specifically, they competed for radicals and adsorption sites simultaneously, while the presence of AO7 and NH4+-N would consume the generated oxidizing radicals and further promote the removal of Cr(VI). The fixed-bed reactor simulated the continuous treatment of wastewater. Various anions (chloride (Cl-), nitrate (NO3-), carbonate (CO32-), and hydrogen phosphate (HPO42-)) interfered differently with the pollutant removal. These findings demonstrate a new dimension of BC potential for decontamination of azo pigment wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/análise , Carvão Vegetal , Cromo , Adsorção , Cloretos
19.
Int J Biol Sci ; 18(11): 4372-4387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35864964

RESUMO

Over the past decades, the incidence of thyroid cancer (TC) rapidly increased all over the world, with the papillary thyroid cancer (PTC) accounting for the vast majority of TC cases. It is crucial to investigate novel diagnostic and therapeutic targets for PTC and explore more detailed molecular mechanisms in the carcinogenesis and progression of PTC. Based on the TCGA and GEO databases, FAM111B is downregulated in PTC tissues and predicts better prognosis in PTC patients. FAM111B suppresses the growth, migration, invasion and glycolysis of PTC both in vitro and in vivo. Furthermore, estrogen inhibits FAM111B expression by DNMT3B methylation via enhancing the recruitment of DNMT3B to FAM111B promoter. DNMT3B-mediated FAM111B methylation accelerates the growth, migration, invasion and glycolysis of PTC cells. In clinical TC patient specimens, the expression of FAM111B is inversely correlated with the expressions of DNMT3B and the glycolytic gene PGK1. Besides, the expression of FAM111B is inversely correlated while DNMT3B is positively correlated with glucose uptake in PTC patients. Our work established E2/DNMT3B/FAM111B as a crucial axis in regulating the growth and progression of PTC. Suppression of DNMT3B or promotion of FAM111B will be potential promising strategies in the estrogen induced PTC.


Assuntos
Proteínas de Ciclo Celular , DNA (Citosina-5-)-Metiltransferases , Neoplasias da Glândula Tireoide , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , DNA (Citosina-5-)-Metiltransferases/genética , Estrogênios , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Metilação , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , DNA Metiltransferase 3B
20.
Sci Rep ; 12(1): 12273, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851831

RESUMO

Global warming is a serious public health threat to people worldwide. High body temperature is one of the important risk factors for Alzheimer's disease (AD), and the body temperature of AD patients has been found to be significantly higher than that of elderly control subjects. However, the effects of high body temperature on cognitive function and AD pathologies have not been completely elucidated. We report here that Tg2576 mice housed at a high ambient temperature of 30 °C for 13 months showed an increase in the body temperature, which is accompanied by memory impairment and an enhancement of amyloid-ß peptides (Aß) generation through the upregulation of ß-site APP cleaving enzyme 1 (BACE1) level and decrease in the level of an Aß-degrading enzyme, neprilysin (NEP) in the brain, compared with those of Tg2576 mice at 23 °C. High body temperature also increased the levels of heat shock proteins (HSPs), stress-stimulated kinases such as JNK, and total tau, leading to the enhancement of tau phosphorylation at 30 °C. Taken together, our findings suggest that high body temperature exacerbates cognitive function and AD pathologies, which provides a mechanistic insight for its prevention.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Temperatura Corporal , Encéfalo/metabolismo , Cognição , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA