RESUMO
Human ABC transporters ABCD1-3 are all localized on the peroxisomal membrane and participate in the ß-oxidation of fatty acyl-CoAs, but they differ from each other in substrate specificity. The transport of branched-chain fatty acids from cytosol to peroxisome is specifically driven by ABCD3, dysfunction of which causes severe liver diseases such as hepatosplenomegaly. Here we report two cryogenic electron microscopy (cryo-EM) structures of ABCD3 bound to phytanoyl-CoA and ATP at resolutions of 2.9 Å and 3.2 Å, respectively. A pair of phytanoyl-CoA molecules were observed in ABCD3, each binding to one transmembrane domain (TMD), which is distinct from our previously reported structure of ABCD1, where each fatty acyl-CoA molecule strongly crosslinks two TMDs. Upon ATP binding, ABCD3 exhibits a conformation that is open towards the peroxisomal matrix, leaving two extra densities corresponding to two CoA molecules deeply embedded in the translocation cavity. Structural analysis combined with substrate-stimulated ATPase activity assays indicated that the present structures might represent two states of ABCD3 in the transport cycle. These findings advance our understanding of fatty acid oxidation and the molecular pathology of related diseases.
RESUMO
Carboxysomes are large self-assembled microcompartments that serve as the central machinery of a CO2-concentrating mechanism (CCM). Biogenesis of carboxysome requires the fine organization of thousands of individual proteins; however, the packaging pattern of internal RuBisCOs remains largely unknown. Here we purified the intact ß-carboxysomes from Synechococcus elongatus PCC 7942 and identified the protein components by mass spectrometry. Cryo-electron tomography combined with subtomogram averaging revealed the general organization pattern of internal RuBisCOs, in which the adjacent RuBisCOs are mainly arranged in three distinct manners: head-to-head, head-to-side, and side-by-side. The RuBisCOs in the outermost layer are regularly aligned along the shell, the majority of which directly interact with the shell. Moreover, statistical analysis enabled us to propose an ideal packaging model of RuBisCOs in the ß-carboxysome. These results provide new insights into the biogenesis of ß-carboxysomes and also advance our understanding of the efficient carbon fixation functionality of carboxysomes.
Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Ribulose-Bifosfato Carboxilase , Synechococcus , Synechococcus/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Microscopia Crioeletrônica/métodos , Modelos MolecularesRESUMO
The cyanosiphophage Mic1 specifically infects the bloom-forming Microcystis aeruginosa FACHB 1339 from Lake Chaohu, China. Previous genomic analysis showed that its 92,627 bp double-stranded DNA genome consists of 98 putative open reading frames, 63% of which are of unknown function. Here, we investigated the transcriptome dynamics of Mic1 and its host using RNA sequencing. In the early, middle, and late phases of the 10 h lytic cycle, the Mic1 genes are sequentially expressed and could be further temporally grouped into two distinct clusters in each phase. Notably, six early genes, including gp49 that encodes a TnpB-like transposase, immediately reach the highest transcriptional level in half an hour, representing a pioneer cluster that rapidly regulates and redirects host metabolism toward the phage. An in-depth analysis of the host transcriptomic profile in response to Mic1 infection revealed significant upregulation of a polyketide synthase pathway and a type III-B CRISPR system, accompanied by moderate downregulation of the photosynthesis and key metabolism pathways. The constant increase of phage transcripts and relatively low replacement rate over the host transcripts indicated that Mic1 utilizes a unique strategy to gradually take over a small portion of host metabolism pathways after infection. In addition, genomic analysis of a less-infective Mic1 and a Mic1-resistant host strain further confirmed their dynamic interplay and coevolution via the frequent horizontal gene transfer. These findings provide insights into the mutual benefit and symbiosis of the highly polymorphic cyanobacteria M. aeruginosa and cyanophages. IMPORTANCE: The highly polymorphic Microcystis aeruginosa is one of the predominant bloom-forming cyanobacteria in eutrophic freshwater bodies and is infected by diverse and abundant cyanophages. The presence of a large number of defense systems in M. aeruginosa genome suggests a dynamic interplay and coevolution with the cyanophages. In this study, we investigated the temporal gene expression pattern of Mic1 after infection and the corresponding transcriptional responses of its host. Moreover, the identification of a less-infective Mic1 and a Mic1-resistant host strain provided the evolved genes in the phage-host coevolution during the multiple-generation cultivation in the laboratory. Our findings enrich the knowledge on the interplay and coevolution of M. aeruginosa and its cyanophages and lay the foundation for the future application of cyanophage as a potential eco-friendly and bio-safe agent in controlling the succession of harmful cyanobacterial blooms.
Assuntos
Bacteriófagos , Microcystis , Microcystis/virologia , Microcystis/genética , Microcystis/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiologia , China , Transcriptoma , Lagos/microbiologia , Lagos/virologia , Genoma Viral/genética , Evolução MolecularRESUMO
Carboxysomes are bacterial microcompartments that encapsulate the enzymes RuBisCO and carbonic anhydrase in a proteinaceous shell to enhance the efficiency of photosynthetic carbon fixation. The self-assembly principles of the intact carboxysome remain elusive. Here we purified α-carboxysomes from Prochlorococcus and examined their intact structures using single-particle cryo-electron microscopy to solve the basic principles of their shell construction and internal RuBisCO organization. The 4.2 Å icosahedral-like shell structure reveals 24 CsoS1 hexamers on each facet and one CsoS4A pentamer at each vertex. RuBisCOs are organized into three concentric layers within the shell, consisting of 72, 32 and up to 4 RuBisCOs at the outer, middle and inner layers, respectively. We uniquely show how full-length and shorter forms of the scaffolding protein CsoS2 bind to the inner surface of the shell via repetitive motifs in the middle and C-terminal regions. Combined with previous reports, we propose a concomitant 'outside-in' assembly principle of α-carboxysomes: the inner surface of the self-assembled shell is reinforced by the middle and C-terminal motifs of the scaffolding protein, while the free N-terminal motifs cluster to recruit RuBisCO in concentric, three-layered spherical arrangements. These new insights into the coordinated assembly of α-carboxysomes may guide the rational design and repurposing of carboxysome structures for improving plant photosynthetic efficiency.
RESUMO
Coordinated carbon and nitrogen metabolism is crucial for bacteria living in the fluctuating environments. Intracellular carbon and nitrogen homeostasis is maintained by a sophisticated network, in which the widespread signaling protein PII acts as a major regulatory hub. In cyanobacteria, PII was proposed to regulate the nitrate uptake by an ABC (ATP-binding cassette)-type nitrate transporter NrtABCD, in which the nucleotide-binding domain of NrtC is fused with a C-terminal regulatory domain (CRD). Here, we solved three cryoelectron microscopy structures of NrtBCD, bound to nitrate, ATP, and PII, respectively. Structural and biochemical analyses enable us to identify the key residues that form a hydrophobic and a hydrophilic cavity along the substrate translocation channel. The core structure of PII, but not the canonical T-loop, binds to NrtC and stabilizes the CRD, making it visible in the complex structure, narrows the substrate translocation channel in NrtB, and ultimately locks NrtBCD at an inhibited inward-facing conformation. Based on these results and previous reports, we propose a putative transport cycle driven by NrtABCD, which is allosterically inhibited by PII in response to the cellular level of 2-oxoglutarate. Our findings provide a distinct regulatory mechanism of ABC transporter via asymmetrically binding to a signaling protein.
Assuntos
Cianobactérias , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Alostérica , Microscopia Crioeletrônica , Cianobactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismoRESUMO
The Myoviridae cyanophage A-1(L) specifically infects the model cyanobacteria Anabaena sp. PCC 7120. Following our recent report on the capsid structure of A-1(L), here we present the high-resolution cryo-EM structure of its intact tail machine including the neck, tail and attached fibers. Besides the dodecameric portal, the neck contains a canonical hexamer connected to a unique pentadecamer that anchors five extended bead-chain-like neck fibers. The 1045-Å-long contractile tail is composed of a helical bundle of tape measure proteins surrounded by a layer of tube proteins and a layer of sheath proteins, ended with a five-component baseplate. The six long and six short tail fibers are folded back pairwise, each with one end anchoring to the baseplate and the distal end pointing to the capsid. Structural analysis combined with biochemical assays further enable us to identify the dual hydrolytic activities of the baseplate hub, in addition to two host receptor binding domains in the tail fibers. Moreover, the structure of the intact A-1(L) also helps us to reannotate its genome. These findings will facilitate the application of A-1(L) as a chassis cyanophage in synthetic biology.
Assuntos
Anabaena , Myoviridae , Proteínas do Capsídeo/química , CapsídeoRESUMO
Bilirubin is mainly generated from the breakdown of heme when red blood cells reach the end of their lifespan. Accumulation of bilirubin in human body usually leads to various disorders, including jaundice and liver disease. Bilirubin is conjugated in hepatocytes and excreted to bile duct via the ATP-binding cassette transporter ABCC2, dysfunction of which would lead to Dubin-Johnson syndrome. Here we determine the structures of ABCC2 in the apo, substrate-bound and ATP/ADP-bound forms using the cryo-electron microscopy, exhibiting a full transporter with a regulatory (R) domain inserted between the two half modules. Combined with substrate-stimulated ATPase and transport activity assays, structural analysis enables us to figure out transport cycle of ABCC2 with the R domain adopting various conformations. At the rest state, the R domain binding to the translocation cavity functions as an affinity filter that allows the substrates of high affinity to be transported in priority. Upon substrate binding, the R domain is expelled from the cavity and docks to the lateral of transmembrane domain following ATP hydrolysis. Our findings provide structural insights into a transport mechanism of ABC transporters finely tuned by the R domain.
Assuntos
Bilirrubina , Proteína 2 Associada à Farmacorresistência Múltipla , Humanos , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Proteína 2 Associada à Farmacorresistência Múltipla/metabolismoRESUMO
Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.
Assuntos
Microcistinas , Peptídeo Sintases , Peptídeo Sintases/química , Conformação Molecular , PeptídeosRESUMO
Transcription factors respond to multilevel stimuli and co-occupy promoter regions of target genes to activate RNA polymerase (RNAP) in a cooperative manner. To decipher the molecular mechanism, here we report two cryo-electron microscopy structures of Anabaena transcription activation complexes (TACs): NtcA-TAC composed of RNAP holoenzyme, promoter and a global activator NtcA, and NtcA-NtcB-TAC comprising an extra context-specific regulator, NtcB. Structural analysis showed that NtcA binding makes the promoter DNA bend by â¼50°, which facilitates RNAP to contact NtcB at the distal upstream NtcB box. The sequential binding of NtcA and NtcB induces looping back of promoter DNA towards RNAP, enabling the assembly of a fully activated TAC bound with two activators. Together with biochemical assays, we propose a 'DNA looping' mechanism of cooperative transcription activation in bacteria.
Assuntos
Proteínas de Bactérias , Compostos Nitrosos , Tiazolidinas , Tiocianatos , Transativadores , Transativadores/genética , Ativação Transcricional , Microscopia Crioeletrônica , Sequência de Bases , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Transcrição Gênica , Regulação Bacteriana da Expressão GênicaRESUMO
In this issue of Structure, Subramanian et al. present the cryo-EM structure of Shigella podophage HRP29, which possesses a T7-like tail complex surrounded by six P22/Sf6-like tailspikes and two unique decoration proteins. These colorful masks of HRP29 record the frequent events of horizontal gene transfer during evolution.
Assuntos
Bacteriófagos , Shigella , Shigella/virologia , Bacteriófagos/ultraestruturaRESUMO
The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones ß-estradiol 17-(ß-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Estradiol , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Estradiol/farmacologia , Estradiol/metabolismo , Mutagênese Sítio-DirigidaRESUMO
The myophage possesses a contractile tail that penetrates its host cell envelope. Except for investigations on the bacteriophage T4 with a rather complicated structure, the assembly pattern and tail contraction mechanism of myophage remain largely unknown. Here, we present the fine structure of a freshwater Myoviridae cyanophage Pam3, which has an icosahedral capsid of ~680 Å in diameter, connected via a three-section neck to an 840-Å-long contractile tail, ending with a three-module baseplate composed of only six protein components. This simplified baseplate consists of a central hub-spike surrounded by six wedge heterotriplexes, to which twelve tail fibers are covalently attached via disulfide bonds in alternating upward and downward configurations. In vitro reduction assays revealed a putative redox-dependent mechanism of baseplate assembly and tail sheath contraction. These findings establish a minimal myophage that might become a user-friendly chassis phage in synthetic biology.
Assuntos
Myoviridae , Montagem de Vírus , Bacteriófago T4/química , Capsídeo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Myoviridae/químicaRESUMO
BACKGROUND: Along with the fast development and urbanization in developing countries, the waterbodies aside the growing cities become heavily polluted and highly eutrophic, thus leading to the seasonal outbreak of cyanobacterial bloom. Systematic isolation and characterization of freshwater cyanophages might provide a biological solution to control the awful blooms. However, genomic sequences and related investigations on the freshwater cyanophages remain very limited to date. RESULTS: Following our recently reported five cyanophages Pam1~Pam5 from Lake Chaohu in China, here we isolated another five cyanophages, termed Pan1~Pan5, which infect the cyanobacterium Pseudanabaena sp. Chao 1811. Whole-genome sequencing showed that they all contain a double-stranded DNA genome of 37.2 to 72.0 kb in length, with less than half of the putative open reading frames annotated with known functions. Remarkably, the siphophage Pan1 encodes an auxiliary metabolic gene phoH and constitutes, together with the host, a complete queuosine modification pathway. Proteomic analyses revealed that although Pan1~Pan5 are distinct from each other in evolution, Pan1 and Pan3 are somewhat similar to our previously identified cyanophages Pam3 and Pam1 at the genomic level, respectively. Moreover, phylogenetic analyses suggested that Pan1 resembles the α-proteobacterial phage vB_DshS-R5C, revealing direct evidence for phage-mediated horizontal gene transfer between cyanobacteria and α-proteobacteria. CONCLUSION: In addition to the previous reports of Pam1~Pam5, the present findings on Pan1~Pan5 largely enrich the library of reference freshwater cyanophages. The abundant genomic information provides a pool to identify novel genes and proteins of unknown function. Moreover, we found for the first time the evolutionary traces in the cyanophage that horizontal gene transfer might occur at the level of not only inter-species, but even inter-phylum. It indicates that the bacteriophage or cyanophage could be developed as a powerful tool for gene manipulation among various species or phyla.
RESUMO
Human platelets contribute to hemostasis and thrombosis, the imbalance of which can cause cardiovascular diseases. The activation and accumulation of platelets can be induced by agonists or inhibited by antagonists. Thus, the human ABC transporter ABCC4, which pumps out platelet agonists and antagonists, might become a promising target for preventing cardiovascular diseases. Here we define five structures of human ABCC4: the apo and three complexed forms in the inward-facing conformation, in addition to an outward-facing occluded conformation upon ATP binding. Combined with biochemical assays, we structurally prove that U46619, a synthetic analog of the unstable agonist TXA2, and the antagonist aspirin are substrates of ABCC4. In addition, we found that the platelet antagonist dipyridamole is a strong competitive inhibitor against ABCC4. These complex structures also enable us to identify a transmembrane pocket in ABCC4 that provides a defined space for the rational design of specific platelet antagonists.
Assuntos
Plaquetas , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Inibidores da Agregação Plaquetária , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/química , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Conformação Proteica , Aspirina/farmacologia , Aspirina/química , Sítios de Ligação , Modelos Moleculares , Cristalografia por Raios X , Relação Estrutura-Atividade , Ligação ProteicaRESUMO
At the first step of phage infection, the receptor-binding proteins (RBPs) such as tail fibers are responsible for recognizing specific host surface receptors. The proper folding and assembly of tail fibers usually requires a chaperone encoded by the phage genome. Despite extensive studies on phage structures, the molecular mechanism of phage tail fiber assembly remains largely unknown. Here, using a minimal myocyanophage, termed Pam3, isolated from Lake Chaohu, we demonstrate that the chaperone gp25 forms a stable complex with the tail fiber gp24 at a stoichiometry of 3:3. The 3.1-Å cryo-electron microscopy structure of this complex revealed an elongated structure with the gp25 trimer embracing the distal moieties of gp24 trimer at the center. Each gp24 subunit consists of three domains: the N-terminal α-helical domain required for docking to the baseplate, the tumor necrosis factor (TNF)-like and glycine-rich domains responsible for recognizing the host receptor. Each gp25 subunit consists of two domains: a non-conserved N-terminal ß-sandwich domain that binds to the TNF-like and glycine-rich domains of the fiber, and a C-terminal α-helical domain that mediates trimerization/assembly of the fiber. Structural analysis enabled us to propose the assembly mechanism of phage tail fibers, in which the chaperone first protects the intertwined and repetitive distal moiety of each fiber subunit, further ensures the proper folding of these highly plastic structural elements, and eventually enables the formation of the trimeric fiber. These findings provide the structural basis for the design and engineering of phage fibers for biotechnological applications.
Assuntos
Bacteriófagos , Sequência de Aminoácidos , Microscopia Crioeletrônica , Modelos Moleculares , Bacteriófagos/metabolismo , Chaperonas Moleculares/metabolismo , Fatores de Necrose Tumoral , Glicina , Plásticos , Proteínas da Cauda Viral/metabolismoRESUMO
RuBisCO is the most abundant enzyme in nature, catalyzing the fixation of CO2 in photosynthesis. Its common form consists of eight RbcL and eight RbcS subunits, the assembly of which requires a series of chaperones that include RbcX and RuBisCO accumulation factor 1 (Raf1). To understand how these RuBisCO-specific chaperones function during cyanobacterial RbcL8RbcS8 (L8S8) holoenzyme formation, we solved a 3.3-Å cryo-electron microscopy structure of a 32-subunit RbcL8Raf18RbcX16 (L8F8X16) assembly intermediate from Anabaena sp. PCC 7120. Comparison to the previously resolved L8F8 and L8X16 structures together with biochemical assays revealed that the L8F8X16 complex forms a rather dynamic structural intermediate, favoring RbcS displacement of Raf1 and RbcX. In vitro assays further demonstrated that both Raf1 and RbcX function to regulate RuBisCO condensate formation by restricting CcmM35 binding to the stably assembled L8S8 holoenzymes. Combined with previous findings, we propose a model on how Raf1 and RbcX work in concert to facilitate, and regulate, cyanobacterial RuBisCO assembly as well as disassembly of RuBisCO condensates.
RESUMO
BACKGROUND: As important producers using photosynthesis on Earth, cyanobacteria contribute to the oxygenation of atmosphere and the primary production of biosphere. However, due to the eutrophication of urban waterbodies and global warming, uncontrollable growth of cyanobacteria usually leads to the seasonal outbreak of cyanobacterial blooms. Cyanophages, a group of viruses that specifically infect and lyse cyanobacteria, are considered as potential environment-friendly agents to control the harmful blooms. Compared to the marine counterparts, only a few freshwater cyanophages have been isolated and genome sequenced to date, largely limiting their characterizations and applications. RESULTS: Here, we isolated five freshwater cyanophages varying in tail morphology, termed Pam1~Pam5, all of which infect the cyanobacterium Pseudanabaena mucicola Chao 1806 that was isolated from the bloom-suffering Lake Chaohu in Anhui, China. The whole-genome sequencing showed that cyanophages Pam1~Pam5 all contain a dsDNA genome, varying in size from 36 to 142 Kb. Phylogenetic analyses suggested that Pam1~Pam5 possess different DNA packaging mechanisms and are evolutionarily distinct from each other. Notably, Pam1 and Pam5 have lysogeny-associated gene clusters, whereas Pam2 possesses 9 punctuated DNA segments identical to the CRISPR spacers in the host genome. Metagenomic data-based calculation of the relative abundance of Pam1~Pam5 at the Nanfei estuary towards the Lake Chaohu revealed that the short-tailed Pam1 and Pam5 account for the majority of the five cyanophages. Moreover, comparative analyses of the reference genomes of Pam1~Pam5 and previously reported cyanophages enabled us to identify three circular and seven linear contigs of virtual freshwater cyanophages from the metagenomic data of the Lake Chaohu. CONCLUSIONS: We propose a high-throughput strategy to systematically identify cyanophages based on the currently available metagenomic data and the very limited reference genomes of experimentally isolated cyanophages. This strategy could be applied to mine the complete or partial genomes of unculturable bacteriophages and viruses. Transformation of the synthesized whole genomes of these virtual phages/viruses to proper hosts will enable the rescue of bona fide viral particles and eventually enrich the library of microorganisms that exist on Earth. Video abstract.
Assuntos
Bacteriófagos , Genoma Viral , Mineração de Dados , Água Doce/microbiologia , Genoma Viral/genética , Metagenômica , Oligopeptídeos , Filogenia , Receptor 2 Toll-Like/agonistas , Receptor Toll-Like 9/agonistasRESUMO
ATP-binding cassette (ABC) superfamily is one of the largest groups of primary active transporters that could be found in all kingdoms of life from bacteria to humans. In humans, ABC transporters can selectively transport a wide spectrum of substrates across membranes, thus playing a pivotal role in multiple physiological processes. In addition, due to the ability of exporting clinic therapeutics, some ABC transporters were originally termed multidrug resistance proteins. Increasing investigations of human ABC transporters in recent years have provided abundant information for elucidating their structural features, based on the structures at distinct states in a transport cycle. This review focuses on the recent progress in human ABC structural analyses, substrate binding specificities, and translocation mechanisms. We dedicate to summarize the common features of human ABC transporters in different subfamilies, and to discuss the possibility to apply the fast-developing techniques, such as cryogenic electron microscopy, and artificial intelligence-assisted structure prediction, for future studies.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Plásticos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Trifosfato de Adenosina , Inteligência Artificial , Humanos , Plásticos/metabolismoRESUMO
Human ABC transporter ABCD1 transports very long-chain fatty acids from cytosol to peroxisome for ß-oxidation, dysfunction of which usually causes the X-linked adrenoleukodystrophy (X-ALD). Here, we report three cryogenic electron microscopy structures of ABCD1: the apo-form, substrate- and ATP-bound forms. Distinct from what was seen in the previously reported ABC transporters, the two symmetric molecules of behenoyl coenzyme A (C22:0-CoA) cooperatively bind to the transmembrane domains (TMDs). For each C22:0-CoA, the hydrophilic 3'-phospho-ADP moiety of CoA portion inserts into one TMD, with the succeeding pantothenate and cysteamine moiety crossing the inter-domain cavity, whereas the hydrophobic fatty acyl chain extends to the opposite TMD. Structural analysis combined with biochemical assays illustrates snapshots of ABCD1-mediated substrate transport cycle. It advances our understanding on the selective oxidation of fatty acids and molecular pathology of X-ALD.