Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Commun ; 13(1): 5174, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36055998

RESUMO

CD4+ T cells are pivotal cells playing roles in the orchestration of humoral and cytotoxic immune responses. It is known that CD4+ T cell proliferation relies on autophagy, but identification of the autophagosomal cargo involved is missing. Here we create a transgenic mouse model, to enable direct mapping of the proteinaceous content of autophagosomes in primary cells by LC3 proximity labelling. Interleukin-7 receptor-α, a cytokine receptor mostly found in naïve and memory T cells, is reproducibly detected in autophagosomes of activated CD4+ T cells. Consistently, CD4+ T cells lacking autophagy show increased interleukin-7 receptor-α surface expression, while no defect in internalisation is observed. Mechanistically, excessive surface interleukin-7 receptor-α sequestrates the common gamma chain, impairing the interleukin-2 receptor assembly and downstream signalling crucial for T cell proliferation. This study shows that key autophagy substrates can be reliably identified in this mouse model and help mechanistically unravel autophagy's contribution to healthy physiology and disease.


Assuntos
Autofagossomos , Linfócitos T CD4-Positivos , Animais , Autofagossomos/metabolismo , Proliferação de Células , Interleucina-2/metabolismo , Interleucina-7/metabolismo , Ativação Linfocitária , Camundongos , Receptores de Interleucina-7/metabolismo
2.
Nat Rev Immunol ; 21(8): 473, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34257428
3.
Aging Cell ; 20(2): e13316, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524238

RESUMO

The ageing of the global population brings about unprecedented challenges. Chronic age-related diseases in an increasing number of people represent an enormous burden for health and social care. The immune system deteriorates during ageing and contributes to many of these age-associated diseases due to its pivotal role in pathogen clearance, tissue homeostasis and maintenance. Moreover, in order to develop treatments for COVID-19, we urgently need to acquire more knowledge about the aged immune system, as older adults are disproportionally and more severely affected. Changes with age lead to impaired responses to infections, malignancies and vaccination, and are accompanied by chronic, low-degree inflammation, which together is termed immunosenescence. However, the molecular and cellular mechanisms that underlie immunosenescence, termed immune cell senescence, are mostly unknown. Cellular senescence, characterised by an irreversible cell cycle arrest, is thought to be the cause of tissue and organismal ageing. Thus, better understanding of cellular senescence in immune populations at single-cell level may provide us with insight into how immune cell senescence develops over the life time of an individual. In this review, we will briefly introduce the phenotypic characterisation of aged innate and adaptive immune cells, which also contributes to overall immunosenescence, including subsets and function. Next, we will focus on the different hallmarks of cellular senescence and cellular ageing, and the detection techniques most suitable for immune cells. Applying these techniques will deepen our understanding of immune cell senescence and to discover potential druggable pathways, which can be modulated to reverse immune ageing.


Assuntos
Senescência Celular , Imunossenescência , Leucócitos/fisiologia , Animais , Biomarcadores/metabolismo , Humanos , Estresse Oxidativo , Proteostase
4.
Neurosci Bull ; 37(3): 311-322, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33355901

RESUMO

Myoclonus dystonia syndrome (MDS) is an inherited movement disorder, and most MDS-related mutations have so far been found in the ε-sarcoglycan (SGCE) coding gene. By generating SGCE-knockout (KO) and human 237 C > T mutation knock-in (KI) mice, we showed here that both KO and KI mice exerted typical movement defects similar to those of MDS patients. SGCE promoted filopodia development in vitro and inhibited excitatory synapse formation both in vivo and in vitro. Loss of function of SGCE leading to excessive excitatory synapses that may ultimately contribute to MDS pathology. Indeed, using a zebrafish MDS model, we found that among 1700 screened chemical compounds, Vigabatrin was the most potent in readily reversing MDS symptoms of mouse disease models. Our study strengthens the notion that mutations of SGCE lead to MDS and most likely, SGCE functions to brake synaptogenesis in the CNS.


Assuntos
Distúrbios Distônicos , Sarcoglicanas , Animais , Distúrbios Distônicos/genética , Humanos , Camundongos , Mutação/genética , Sarcoglicanas/genética , Peixe-Zebra
5.
PLoS Biol ; 15(8): e2002257, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28837622

RESUMO

While innate behaviors are conserved throughout the animal kingdom, it is unknown whether common signaling pathways regulate the development of neuronal populations mediating these behaviors in diverse organisms. Here, we demonstrate that the Wnt/ß-catenin effector Lef1 is required for the differentiation of anxiolytic hypothalamic neurons in zebrafish and mice, although the identity of Lef1-dependent genes and neurons differ between these 2 species. We further show that zebrafish and Drosophila have common Lef1-dependent gene expression in their respective neuroendocrine organs, consistent with a conserved pathway that has diverged in the mouse. Finally, orthologs of Lef1-dependent genes from both zebrafish and mouse show highly correlated hypothalamic expression in marmosets and humans, suggesting co-regulation of 2 parallel anxiolytic pathways in primates. These findings demonstrate that during evolution, a transcription factor can act through multiple mechanisms to generate a common behavioral output, and that Lef1 regulates circuit development that is fundamentally important for mediating anxiety in a wide variety of animal species.


Assuntos
Ansiedade/prevenção & controle , Hipotálamo/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Comportamento Animal , Biomarcadores/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Regulação da Expressão Gênica , Genes Reporter , Humanos , Hipotálamo/citologia , Hipotálamo/patologia , Fator 1 de Ligação ao Facilitador Linfoide/genética , Masculino , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/patologia , Especificidade da Espécie , Fatores de Transcrição/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
J Neurosci ; 36(7): 2247-60, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888934

RESUMO

Intellectual disability is a common neurodevelopmental disorder characterized by impaired intellectual and adaptive functioning. Both environmental insults and genetic defects contribute to the etiology of intellectual disability. Copy number variations of SORBS2 have been linked to intellectual disability. However, the neurobiological function of SORBS2 in the brain is unknown. The SORBS2 gene encodes ArgBP2 (Arg/c-Abl kinase binding protein 2) protein in non-neuronal tissues and is alternatively spliced in the brain to encode nArgBP2 protein. We found nArgBP2 colocalized with F-actin at dendritic spines and growth cones in cultured hippocampal neurons. In the mouse brain, nArgBP2 was highly expressed in the cortex, amygdala, and hippocampus, and enriched in the outer one-third of the molecular layer in dentate gyrus. Genetic deletion of Sorbs2 in mice led to reduced dendritic complexity and decreased frequency of AMPAR-miniature spontaneous EPSCs in dentate gyrus granule cells. Behavioral characterization revealed that Sorbs2 deletion led to a reduced acoustic startle response, and defective long-term object recognition memory and contextual fear memory. Together, our findings demonstrate, for the first time, an important role for nArgBP2 in neuronal dendritic development and excitatory synaptic transmission, which may thus inform exploration of neurobiological basis of SORBS2 deficiency in intellectual disability. SIGNIFICANCE STATEMENT: Copy number variations of the SORBS2 gene are linked to intellectual disability, but the neurobiological mechanisms are unknown. We found that nArgBP2, the only neuronal isoform encoded by SORBS2, colocalizes with F-actin at neuronal dendritic growth cones and spines. nArgBP2 is highly expressed in the cortex, amygdala, and dentate gyrus in the mouse brain. Genetic deletion of Sorbs2 in mice leads to impaired dendritic complexity and reduced excitatory synaptic transmission in dentate gyrus granule cells, accompanied by behavioral deficits in acoustic startle response and long-term memory. This is the first study of Sorbs2 function in the brain, and our findings may facilitate the study of neurobiological mechanisms underlying SORBS2 deficiency in the development of intellectual disability.


Assuntos
Encéfalo/crescimento & desenvolvimento , Dendritos/patologia , Memória , Proteínas dos Microfilamentos/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Comportamento Animal , DNA/genética , Espinhas Dendríticas/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Cones de Crescimento/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Memória de Longo Prazo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Proteínas de Ligação a RNA , Reconhecimento Psicológico , Reflexo de Sobressalto/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA