Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202403066, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752880

RESUMO

Pure aromatic hydrocarbon materials (PHC) represent a new generation of host materials for phosphorescent OLEDs (PhOLEDs), free of heteroatoms. They reduce the molecular complexity, can be easily synthesized and are an important direction towards robust devices. As heteroatoms can be involved in bonds dissociations in operating OLEDs through exciton induced degradation process, developing novel PHCs appear particularly relevant for the future of this technology. In the present work, we report a series of extended PHCs constructed on the assembly of three spirobifluorene fragments. The resulting positional isomers present a high triplet energy level, a wide HOMO/LUMO difference and improved thermal and morphological properties compared to previously reported PHCs. These characteristics are beneficial for the next generation of host materials for PhOLEDs and provide relevant design guidelines. Used as host in blue-emitting PhOLEDs, which are still the weakest link of the field, a very high EQE of 24 % and low threshold voltage of 3.56 V were obtained with a low-efficiency roll-off. This high performance strengthens the position of PHC strategy as an efficient alternative for OLED technology and opens the way to a more simple electronic.

2.
Angew Chem Int Ed Engl ; 63(10): e202317571, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38230818

RESUMO

Insight into effect of deuterium isotopes on organic near-IR (NIR) emitters was explored by the use of self-assembled Pt(II) complexes H-3-f and HPh-3-f, and their deuterated analogues D-3-f and DPh-3-f, respectively (Scheme 2). In vacuum deposited thin film, albeit having nearly identical emission spectral feature maximized at ~810 nm, H-3-f and D-3-f exhibit remarkable difference in photoluminescence quantum yield (PLQY) of 29 % and 50 %, respectively. Distinction in PLQY is also observed for HPh-3-f (800 nm, 50 %) and DPh-3-f (798 nm, 67 %). We then elucidated the theoretical differences in the impact on near-infrared (NIR) luminescence between Pt(II) complexes and organic small molecules upon deuteration. The results establish a general guideline for the deuteration on NIR emission efficiency. From a perspective of practical application, NIR OLEDs based on D-3-f and DPh-3-f emitters attain EQEmax of 15.5 % (radiance 31,287 mW Sr-1 m-2 ) and 16.6 % (radiance of 32,279 mW Sr-1 m-2 ) at 764 nm and 796 nm, respectively, both of which set new records for NIR OLEDs of >750 nm.

3.
ACS Appl Mater Interfaces ; 16(3): 3809-3818, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38211320

RESUMO

Narrowband blue emitters are indispensable in achieving ultrahigh-definition OLED displays that satisfy the stringent BT 2020 standard. Hereby, a series of bis-tridentate Ir(III) complexes bearing electron-deficient imidazo[4,5-b]pyridin-2-ylidene carbene coordination fragments and 2,6-diaryloxy pyridine ancillary groups were designed and synthesized. They exhibited deep blue emission with quantum yields of up to 89% and a radiative lifetime of 0.71 µs in the DPEPO host matrix, indicating both the high efficiency and excellent energy transfer process from the host to dopant. The OLED based on Irtb1 showed an emission at 468 nm with a maximum external quantum efficiency (EQE) of 22.7%. Moreover, the hyper-OLED with Irtb1 as a sensitizer for transferring energy to terminal emitter v-DABNA exhibited a narrowband blue emission at 472 nm and full width at half-maximum (FWHM) of 24 nm, a maximum EQE of 23.5%, and EQEs of 19.7, 16.1, and 12.9% at a practical brightness of 100, 1000, and 5000 cd/m2, respectively.

4.
Sci Bull (Beijing) ; 68(23): 2954-2961, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37919156

RESUMO

In terms of tunable luminescence and high quantum efficiency, colloidal quantum dots (CQDs) are promising semiconductors for constructing near-infrared light-emitting diodes (NIR-LEDs). However, currently available NIR-LEDs are susceptible to variations in the emission layer thickness (EMLT), the highest external quantum efficiency (EQE) decreases to below 50% (relative to peak EQE) when the EMLT varies out of a narrow range of (±30 nm). This is due to the thickness-dependent carrier recombination rate and current density variation, resulting in batch-to-batch EQE fluctuations that limit LED reproducibility. Here we report efficient NIR-LEDs that exhibit EQE variations of less than 15% (relative to the champion EQE) over an EMLT range of 40-220 nm; the highest achievable EQE of ∼11.5% was obtained by encapsulating a 212 nm-thick CQD within a type-I inorganic shell to enhance the radiative recombination in the dots, resulting in a high photoluminescence quantum yield of 80%, and by post-treating the films with a bifunctional linking agent to improve and balance the hole and electron mobilities in the entire film (electron mobility: 8.23 × 10-3 cm2 V-1 s-1; hole mobility: 7.0 × 10-3 cm2 V-1 s-1). This work presents the first NIR-LEDs that exhibit EMLT-invariant EQE over an EMLT range of 40-220 nm, which represents the highest EQE among reported CQD NIR-LEDs with a QD thickness exceeding 100 nm.

5.
Nat Commun ; 14(1): 6419, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828017

RESUMO

Efficient Förster energy transfer from a phosphorescent sensitizer to a thermally activated delayed fluorescent terminal emitter constitutes a potential solution for achieving superb blue emissive organic light-emitting diodes, which are urgently needed for high-performance displays. Herein, we report the design of four Ir(III) metal complexes, f-ct1a ‒ d, that exhibit efficient true-blue emissions and fast radiative decay lifetimes. More importantly, they also undergo facile isomerization in the presence of catalysts (sodium acetate and p-toluenesulfonic acid) at elevated temperature and, hence, allow for the mass production of either emitter without decomposition. In this work, the resulting hyper-OLED exhibits a true-blue color (Commission Internationale de I'Eclairage coordinate CIEy = 0.11), a full width at half maximum of 18 nm, a maximum external quantum efficiency of 35.5% and a high external quantum efficiency 20.3% at 5000 cd m‒2, paving the way for innovative blue OLED technology.

6.
Angew Chem Int Ed Engl ; 62(40): e202310047, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37593817

RESUMO

The current availability of multi-resonance thermally activated delayed fluorescence (MR-TADF) materials with excellent color purity and high device efficiency in the deep-blue region is appealing. To address this issue in the emerged nitrogen/carbonyl MR-TADF system, we propose a spiro-lock strategy. By incorporating spiro functionalization into a concise molecular skeleton, a series of emitters (SFQ, SOQ, SSQ, and SSeQ) can enhance molecular rigidity, blue-shift the emission peak, narrow the emission band, increase the photoluminescence quantum yield by over 92 %, and suppress intermolecular interactions in the film state. The referent CZQ without spiro structure has a more planar skeleton, and its bluer emission in the solution state redshifts over 40 nm with serious spectrum broadening and a low PLQY in the film state. As a result, SSQ achieves an external quantum efficiency of 25.5 % with a peak at 456 nm and a small full width at half maximum of 31 nm in a simple unsensitized device, significantly outperforming CZQ. This work discloses the importance of spiro-junction in modulating deep-blue MR-TADF emitters.

7.
Org Lett ; 25(32): 6024-6028, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37552571

RESUMO

Red through-space charge transfer thermally activated delayed fluorescence (TSCT TADF) materials named SAF36DCPP and SAF27DCPP with sandwiched structures were synthesized. Single crystals indicated that the intramolecular C-H···π interactions play a vital role in rigidifying the sandwiched structure, which results in a fluorescence yield of 63% for SAF36DCPP compared to 40% for SAF27DCPP. Organic light-emitting diodes with SAF36DCPP as the emitter realized a maximum external quantum efficiency of 16.12%.

8.
Adv Mater ; : e2305273, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461316

RESUMO

Efficient blue phosphors remain a formidable challenge for organic light-emitting diodes (OLEDs). To circumvent this obstacle, a series of Ir(III)-based carbene complexes bearing asymmetric di-N-aryl 6-(trifluoromethyl)-2H-imidazo[4,5-b]pyridin-2-ylidene chelates, namely, f-ct6a-c, are synthesized, and their structures and photophysical properties are comprehensively investigated. Moreover, these emitters can undergo interconversion in refluxing 1,2,4-trichlorobenzene, catalyzed by a mixture of sodium acetate (NaOAc) and p-toluenesulfonic acid monohydrate (TsOH·H2 O) without decomposition. All Ir(III) complexes present good photoluminescence quantum yield (ΦPL = 83-88%) with peak maximum (max.) at 443-452 nm and narrowed full width at half maximum (FWHM = 66-73 nm). Among all the fabricated OLED devices, f-ct6b delivers a max. external quantum efficiency (EQE) of 23.4% and Commission Internationale de L'Eclairage CIEx , y coordinates of (0.14, 0.12), whereas the hyper-OLED device based on f-ct6a and 5H,9H,11H,15H-[1,4] benzazaborino [2,3,4-kl][1,4]benzazaborino[4',3',2':4,5][1,4]benzazaborino[3,2-b]phenazaborine-7,13-diamine, N7,N7,N13,N13,5,9,11,15-octaphenyl (ν-DABNA) exhibits max. EQE of 26.2% and CIEx , y of (0.12, 0.13). Finally, the corresponding tandem OLED with f-ct6b as dopant gives a max. luminance of over 10 000 cd m-2 and max. EQE of 42.1%, confirming their candidacies for making true-blue OLEDs.

9.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080489

RESUMO

The effective reflective anode remains a highly desirable component for the fabrication of reliable top-emitting organic light-emitting diodes (TE-OLEDs) which have the potential to be integrated with complementary metal-oxide-semiconductor (CMOS) circuits for microdisplays. This work demonstrates a novel laminated anode consisting of a Cr/Al/Cr multilayer stack. Furthermore, we implement an ultra-thin titanium nitride (TiN) layer as a protective layer on the top of the Cr/Al/Cr composite anode, which creates a considerably reflective surface in the visible range, and meanwhile improves the chemical stability of the electrode against the atmosphere or alkali environment. Based on [2-(2-pyridinyl-N)phenyl-C](acetylacetonate)iridium(III) as green emitter and Mg/Ag as transparent cathode, our TE-OLED using the TiN-coated anode achieves the maximum current efficiency of 71.2 cd/A and the maximum power efficiency of 66.7 lm/W, which are 81% and 90% higher than those of the reference device without TiN, respectively. The good device performance shows that the Cr/Al/Cr/TiN could function as a promising reflective anode for the high-resolution microdisplays on CMOS circuits.

10.
Angew Chem Int Ed Engl ; 61(22): e202201886, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35293091

RESUMO

A multiple resonance thermally activated delayed fluorescence (MR-TADF) molecule with a fused, planar architecture tends to aggregate at high doping ratios, resulting in broad full width at half maximum (FWHM), redshifting electroluminescence peaks, and low device efficiency. Herein, we propose a mono-substituted design strategy by introducing spiro-9,9'-bifluorene (SBF) units with different substituted sites into the MR-TADF system for the first time. As a classic steric group, SBF can hinder interchromophore interactions, leading to high device efficiency (32.2-35.9 %) and narrow-band emission (≈27 nm). Particularly, the shield-like molecule, SF1BN, seldom exhibits a broadened FWHM as the doping ratio rises, which differs from the C3-substituted isomer and unhindered parent emitter. These results manifest an effective method for constructing highly efficient MR-TADF emitters through a spiro strategy and elucidate the feasibility for steric modulation of the spiro structure in π-framework.

11.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615328

RESUMO

Solution processes have promising advantages of low manufacturing cost and large-scale production, potentially applied for the fabrication of organic and quantum dot light-emitting diodes (OLEDs and QLEDs). To meet the expected lifespan of OLEDs/QLEDs in practical display and lighting applications, tandem architecture by connecting multiple light-emitting units (LEUs) through a feasible intermediate connection layer (ICL) is preferred. However, the combination of tandem architecture with solution processes is still limited by the choices of obtainable ICLs due to the unsettled challenges, such as orthogonal solubility, surface wettability, interfacial corrosion, and charge injection. This review focuses on the recent progresses of solution-processed tandem OLEDs and tandem QLEDs, covers the design and fabrication of various ICLs by solution process, and provides suggestions on the future challenges of corresponding materials and devices, which are anticipated to stimulate the exploitation of the emerging light technologies.

12.
Small ; 17(28): e2101902, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117827

RESUMO

Inorganic perovskite CsPbI2 Br has advantages of excellent thermal stability and reasonable bandgap, which make it suitable for top layer of tandem solar cells. Nevertheless, solution-processed all-inorganic perovskites generally suffer from high-density defects as well as significant tensile strain near underlayer/perovskite interface, both leading to compromised device efficiency and stability. In this work, the defect density as well as interfacial tensile strain in inverted CsPbI2 Br perovskite solar cells (PeSCs) is remarkably reduced by using a bilayer underlayer composed of dopant-free 2,2',7,7'-tetrakis(N,N-dip-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD) and copper phthalocyanine 3,4',4″,4'″-tetrasulfonated acid tetrasodium salt (TS-CuPc) nanoparticles. As compared to control devices with pristine Spiro-OMeTAD, devices based on Spiro-OMeTAD/TS-CuPc exhibit remarkably improved photovoltaic performance and enhanced thermal/humidity stability due to the better perovskite crystallization, improved interfacial passivation, and hole-collection as well as efficient interfacial strain release. As a result, a champion efficiency of 14.85% can be achieved, which is approaching to the best reported for dopant-free and inverted all-inorganic PeSCs. The work thus provides an efficient strategy to simultaneously regulate the defects density and strain issue related to inorganic perovskites.

13.
ACS Appl Mater Interfaces ; 10(18): 15933-15942, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29683312

RESUMO

A simple alcohol-soluble perylene derivative (i.e., tetramethylammonium salt of perylene-3,4,9,10-tetracarboxylic acid; TMA-PTC) was prepared and applied as a cathode interlayer (CIL) to modify the PC61BM/Ag interface in planar p-i-n perovskite solar cells (PeSCs). As a result, the power conversion efficiency (PCE) of the TMA-PTC-based PeSCs is ca. 30% higher than that of the devices without CIL. It was revealed that the enhancement in PCE might be attributed to the improved electron-transporting and hole-blocking properties of the PC61BM/TMA-PTC/Ag interfaces. Moreover, the TMA-PTC devices show remarkably higher stability than those without CIL probably due to the suppressed corrosion of perovskite on Ag cathode. Our findings thus demonstrate a multifunctional and solution-processable CIL that may be a promising block for the fabrication of low-cost, high-efficiency and stable planar p-i-n PeSCs.

14.
RSC Adv ; 8(28): 15698-15702, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35539492

RESUMO

A novel mixed perovskite emitter layer is applied to design all-inorganic cesium lead halide perovskite light-emitting diodes (PeLEDs) with high electroluminescence (EL) performance, by combining CsPbBr3 with iridium(iii)bis[2-(4',6'-difluorophenyl)pyridinato-N,C2']-picolinate (FIrpic), where FIrpic is a phosphorescent material with very high internal quantum efficiency (IQE) approaching 100%. The CsPbBr3:FIrpic PeLEDs show a maximum luminance of 5486 cd m-2, and an external quantum efficiency of 0.47%, which are 1.84 and 1.76 times that of neat CsPbBr3 PeLEDs, respectively. It is found that FIrpic molecules as an assistant dopant can efficiently transmit energy from the excitons of FIrpic to the excited state of the CsPbBr3 emitter via a Förster energy transfer process, leading to enhanced EL efficiency in the CsPbBr3:FIrpic PeLEDs.

15.
Inorg Chem ; 52(10): 5867-75, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23621364

RESUMO

A tetradentate bis(pyridylpyrazolate) chelate, L, is assembled by connecting two bidentate 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole chelates at the 6 position of the pyridyl fragment with a phenylamido appendage. This chelate was then utilized in the synthesis of three osmium(II) complexes, namely, [Os(L)(CO)2] (4), [Os(L)(PPh2Me)2] (5), and [Os(L)(PPhMe2)2] (6). Single-crystal X-ray structural analyses were executed on 4 and 5 to reveal the bonding arrangement of the L chelate. Phosphine-substituted derivatives 5 and 6 are highly emissive in both solution and the solid state, and their photophysical properties were measured and discussed on the basis of computational approaches. For application, fabrication and analysis of organic light-emitting diodes (OLEDs) were also carried out. The OLEDs using 5 and 6 as dopants exhibit saturated red emission with maximum external quantum efficiencies of 9.8% and 9.4%, respectively, which are higher than that of the device using [Ir(piq)3] as a red-emitting reference sample. Moreover, for documentation, 5 and 6 also achieve a maximum brightness of 19540 cd·m(-2) at 800 mA·cm(-2) (11.6 V) and 12900 cd·m(-2) at 500 mA·cm(-2) (10.5 V), respectively.


Assuntos
Quelantes/química , Compostos Organometálicos/química , Osmio/química , Pirazóis/química , Piridinas/química , Quelantes/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
16.
ACS Appl Mater Interfaces ; 4(10): 5211-6, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23003119

RESUMO

An ultrathin layer of indium trichloride (InCl(3)) is thermally evaporated on the indium tin oxide (ITO) anode to enhance the hole injection in simplified phosphorescent organic light-emitting diodes (PHOLEDs). Comparing with the device with ultraviolet (UV)-ozone treatment, the device modified by InCl(3) exhibits a maximum current efficiency of 82.2 cd/A measured at about 2000 cd/cm(2) and 36% improvement in power efficiency measured at 20 mA/cm(2). More importantly, more than three times improvement in half lifetime estimated at an initial luminance of 1000 cd/cm(2) is achieved. The investigations using ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and the bias- and temperature-dependent current density-voltage characteristics in the related hole-dominated devices have revealed that the improved device performance is mainly attributed to the enhanced hole injection resulting from the lowered hole injection barrier height in the InCl(3)-modified devices.

17.
Adv Mater ; 24(39): 5345-51, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22833528

RESUMO

Self-assembled microtubes of mixed charge-transfer (CT) complexes comprising TCNB and naphthalene can be constructed with pyrene as dopant by an etching-assisted CT-induced interaction. Highly efficient Förster resonance energy transfer (FRET) from the excited naphthalene-TCNB to pyrene-TCNB molecules is obtained in mixed CT complex microtubes. White-light emissive CT complex microtubes can be formed by adjusting the dopant concentration and serve as an active optical waveguide.


Assuntos
Equipamentos e Provisões Elétricas , Hidrocarbonetos Aromáticos/química , Luz , Microtecnologia/métodos , Cor , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA