RESUMO
Chronic Lung Allograft Dysfunction (CLAD) is a critical post-transplant complication that predominantly determines the long-term survival rates and quality of life of patients undergoing lung transplantation. The limited efficacy of current immunosuppressive strategies underscores our incomplete understanding of the immunological aspects of CLAD. Hence, there is an urgent need for more comprehensive and targeted research to unravel the complex interplay of immune cells in the development and progression of CLAD. This study conducts an in-depth analysis of the immune environment in CLAD. By examining the gene expression profiles of T cells, natural killer cells, B cells, macrophages, and monocytes, we have elucidated a unique immunological landscape in CLAD compared to healthy controls. We highlight the heterogeneity within the immune populations and provide a comprehensive understanding of the immune mechanisms driving CLAD. Enrichment analysis identified specific pathways that are either overactive or suppressed in CLAD, revealing potential molecular targets for therapeutic intervention. Our findings emphasize the crucial role of T cells in the pathophysiology of CLAD, coordinating the immune response and revealing an amplified immune cell network, potentially leading to maladaptive tissue responses. By integrating a comprehensive cellular and molecular portrait of the immune environment, our research not only deepens our understanding of the pathogenesis of CLAD but also lays a foundational approach for the development of targeted therapies.
Assuntos
Transplante de Pulmão , Transcriptoma , Humanos , Transcriptoma/genética , Qualidade de Vida , Perfilação da Expressão Gênica , Pulmão , Aloenxertos , Estudos RetrospectivosRESUMO
BACKGROUND: Resistance of colorectal cancer (CRC) cells to radiotherapy considerably contributes to poor clinical outcomes of CRC patients. Microarray profiling in this study revealed the differentially expressed forkhead box Q1 (FOXQ1) in CRC, and thus we aimed to illustrate the role of FOXQ1 in CRC by modulating stemness and radio-resistance of CRC cells. METHODS: CRC and adjacent normal tissues were collected from CRC patients, and the correlation between FOXQ1 expression and CRC prognosis was analyzed. Subsequently, we determined the expression of FOXQ1, sirtuin 1 (SIRT1) and ß-catenin in CRC tissues and cell lines. The binding affinity between FOXQ1 and SIRT1 and that between SIRT1 and ß-catenin were validated with luciferase reporter gene, Co-IP and ChIP assays. Following a metagenomics analysis of CRC intestinal microbiota, the effects of the FOXQ1/SIRT1/ß-catenin axis on CRC stem cell phenotypes and radio-resistance was evaluated in vitro and in vivo through manipulation of gene expression. Besides, mouse feces were collected to examine changes in intestinal microbiota. RESULTS: FOXQ1 was highly expressed in CRC tissues and cells and positively correlated with poor prognosis of CRC patients. FOXQ1 overexpression contributed to resistance of CRC cells to radiation. Knockdown of FOXQ1 inhibited the stemness of CRC cells and reversed their radio-resistance. FOXQ1 enhanced the transcriptional expression of SIRT1, and SIRT1 enhanced the expression and nuclear translocation of ß-catenin. Knockdown of FOXQ1 repressed SIRT1 expression, thus reducing the stemness and radio-resistance of CRC cells. Moreover, FOXQ1 knockdown suppressed CRC xenograft formation in xenograft-bearing nude mice through inhibiting SIRT1 and ß-catenin to reduce the content of pathological bacteria that were up-regulated in CRC. CONCLUSION: FOXQ1-mediated SIRT1 upregulation augments expression and nuclear translocation of ß-catenin and benefits CRC-related intestinal pathological bacterial, thereby enhancing the stemness and radio-resistance of CRC cells.
Assuntos
Neoplasias Colorretais/genética , Fatores de Transcrição Forkhead/metabolismo , Células-Tronco Neoplásicas/metabolismo , Sirtuína 1/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Feminino , Microbioma Gastrointestinal , Humanos , Masculino , Camundongos , Camundongos Nus , Regulação para CimaRESUMO
Intestinal inflammation is a common disease which can further lead to inflammatory bowel disease and even intestinal cancer. The increasing focus has come to the role of short-chain fatty acid (SCFA) in various bowel diseases. Hence, this study was designed to explore the specific role of SCFA in intestinal inflammation. In vivo and in vitro models of intestinal inflammation were constructed by lipopolysaccharide (LPS) injection in mice and LPS treatment on intestinal epithelial cells. A possible regulatory mechanism involving SCFA, CCAAT enhancer-binding protein beta (CEBPB), microRNA-145 (miR-145), and dual-specificity phosphatase 6 (DUSP6) in intestinal inflammation was verified by ChIP assay and dual-luciferase reporter gene assay. To evaluate the effects of SCFA on LPS-treated intestinal epithelial cells, the expression of relevant genes and inflammatory factors (IL-6, TNF-α, and IL-1ß) were determined. Last, the role of SCFA in vivo was explored through the scoring of disease activity index (DAI) and observation of colonic histology of LPS-treated mice. SCFA decreased the CEBPB expression in mouse colon tissues and small intestine epithelial cells induced by LPS. Furthermore, CEBPB could bind to the miR-145 promoter to inhibit its expression, thereby promoting the expression of DUSP6. In addition, SCFA improved the DAI, colonic histology, and the expression of serum inflammatory factors in LPS-treated mice and cells, noting that SCFA alleviated intestinal inflammation in vitro and in vivo. To sum up, SCFA inhibited DUSP6 by upregulating miR-145 through CEBPB repression and thus prevented the development of intestinal inflammation.