Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 370: 122945, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39418700

RESUMO

Riparian ecosystems are essential carbon dioxide (CO2) sources, which considerably promotes climate warming. However, the other greenhouse gas fluxes (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the riparian ecosystems have not been well studied, and it remains unclear whether and how these GHG fluxes respond to extreme weather, fertilization and hydrological alterations associated with reservoir management. Here, we assessed the impacts of hydrological alterations (i.e., flooding frequency) and fertilization (nitrogen and/or phosphorus) induced by human activities (hydroengineering construction and agricultural activities) on GHG fluxes, and further investigated the underlying mechanisms in two contrasting years (normal vs. extreme rainfall years) in a reservoir riparian zone dominated by grasses. The significant combined effects of extreme rainfall events and human activities (hydrological alterations and fertilization) on the GHGs were observed. Continuous flooding reduced CO2 emissions by 24% but increased CH4 emissions by ∼4 times in a normal rainfall year. In addition, nitrogen fertilization promoted CO2 emissions by 37%. However, these phenomena were not observed in the year with extreme rainfall events, which made the flooding levels homogeneous across the treatments. Furthermore, we found that CO2 fluxes were driven by the soil moisture, nutrient content, aboveground biomass, and root carbon content, while CH4 and N2O fluxes were merely driven by the soil properties (pH, moisture, and nutrient content). This study provides valuable insights into the crucial role of extreme rainfall events, hydrological alteration, and fertilization in regulating GHG fluxes in riparian ecosystems, as well as supports the integration of these changes in GHG emission models.

2.
Nat Commun ; 15(1): 8785, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39389978

RESUMO

Climate warming threatens global food security by exacerbating pressures on degraded soils under intensive crop production. Conservation agriculture is promoted as a sustainable solution that improves soil health and sustains crop yields in a changing climate, but these benefits may be affected by long-term warming. Here, we investigate the effects of conservation agriculture compared to conventional agriculture on 17 soil properties, microbial diversity and crop yields, during eight-years' experimental warming. An overall positive effect of warming on soil health over time under conservation agriculture is characterized by linear increases in soil organic carbon and microbial biomass carbon. Warming-triggered shifts in microbial biomass carbon and fungal diversity (saprogen richness) are directly linked to a 9.3% increase in wheat yields over eight years, but only under conservation agriculture. Overall, conservation agriculture results in an average 21% increase in soil health and supports similar levels of crop production after long-term warming compared to conventional agriculture. Our work provides insights into the potential benefits of conservation agriculture for long-term sustainable food production because improved soil health improves resilience to the effects of climate warming.


Assuntos
Agricultura , Conservação dos Recursos Naturais , Produtos Agrícolas , Microbiologia do Solo , Solo , Solo/química , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Triticum/crescimento & desenvolvimento , Biomassa , Mudança Climática , Carbono/metabolismo , Carbono/análise , Aquecimento Global , Fungos , Produção Agrícola/métodos
3.
J Environ Manage ; 370: 122428, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260281

RESUMO

Soil microbial diversity is crucial for regulating biogeochemical cycles, including soil carbon (C) dynamics and nutrient cycling. However, how climate, plants, and soil properties influence the microbiome in forests remains unclear, especially at the continental scale, hindering us to better understand forest C-climate change feedback. Here, we investigated the spatial patterns of microbial diversity across China's forests and explored the controlling factors of microbial ß diversity and network complexity. Our results showed that soil pH strongly influenced bacterial and fungal ß diversity compared to climate, soil nutrient and plant properties. To further investigate the environmental preference of the microbial networks, we classified the amplicon sequence variants (ASVs) into five groups ranging from acidic to alkaline soils. Co-occurrence network analysis revealed that the topological structure of the bacterial network (e.g., edge and degree) increased with pH and was negatively correlated with ß diversity but not for fungal diversity. Soil fungi exhibited higher ß diversity and network complexity (i.e., degree and betweenness) than bacteria in acidic soils (pH < 5.1), and vice versa in neutral and alkaline soils (pH > 5.5). Within the pH range of 5.1-5.5, the bacterial-fungal network displayed the highest network complexity with the lowest fungal ß diversity, and significant positive correlations were found between fungal ß diversity and soil properties. In addition, bacterial growth in acidic soil (pH < 5.5) showed positive correlations with acid phosphatase (AP), but negative ones with ß-1,4-glucosidase (BG), and vice versa in neutral and alkaline soils (pH > 5.5). Furthermore, 46 bacterial core species were identified, and their abundance had significant correlation with soil pH. These findings highlight the critical role of soil pH in driving soil microbial ß diversity across China's forests and reveal the effects of pH thresholds on changes in the soil microbial network and core species.

4.
Ecology ; 105(8): e4375, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924062

RESUMO

Fungi are key decomposers of deadwood, but the impact of anthropogenic changes in nutrients and temperature on fungal community and its consequences for wood microbial respiration are not well understood. Here, we examined how nitrogen and phosphorus additions (field experiment) and warming (laboratory experiment) together influence fungal composition and microbial respiration from decomposing wood of angiosperms and gymnosperms in a subtropical forest. Nutrient additions significantly increased wood microbial respiration via fungal composition, but effects varied with nutrient types and taxonomic groups. Specifically, phosphorus addition significantly increased wood microbial respiration (65%) through decreased acid phosphatase activity and increased abundance of fast-decaying fungi (e.g., white rot), while nitrogen addition marginally increased it (30%). Phosphorus addition caused a greater increase in microbial respiration in gymnosperms than in angiosperms (83.3% vs. 46.9%), which was associated with an increase in Basidiomycota:Ascomycota operational taxonomic unit abundance in gymnosperms but a decrease in angiosperms. The temperature dependencies of microbial respiration were remarkably constant across nutrient levels, consistent with metabolic scaling theory hypotheses. This is because there was no significant interaction between temperature and wood phosphorus availability or fungal composition, or the interaction among the three factors. Our results highlight the key role of tree identity in regulating nutrient response of wood microbial respiration through controlling fungal composition. Given that the range of angiosperm species may expand under climate warming and forest management, our data suggest that expansion will decrease nutrient effects on forest carbon cycling in forests previously dominated by gymnosperm species.


Assuntos
Fungos , Árvores , Madeira , Fungos/fisiologia , Madeira/microbiologia , Árvores/microbiologia , Fósforo/metabolismo , Nitrogênio/metabolismo , Magnoliopsida/fisiologia
5.
Sci Total Environ ; 946: 174330, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38945245

RESUMO

Ecological succession and restoration rapidly promote multiple dimensions of ecosystem functions and mitigate global climate change. However, the factors governing the limited capacity to sequester soil organic carbon (SOC) in old forests are poorly understood. Ecological theory predicts that plants and microorganisms jointly evolve into a more mutualistic relationship to accelerate detritus decomposition and nutrient regeneration in old than young forests, likely explaining the changes in C sinks across forest succession or rewilding. To test this hypothesis, we conducted a field experiment of root-mycorrhizal exclusion in successional subtropical forests to investigate plant-decomposer interactions and their effects on SOC sequestration. Our results showed that SOC accrual rate at the 0-10 cm soil layer was 1.26 mg g-1 yr-1 in early-successional arbuscular mycorrhizal (AM) forests, which was higher than that in the late-successional ectomycorrhizal (EcM) forests with non-significant change. A transition from early-successional AM to late-successional EcM forests increase fungal diversity, especially EcM fungi. In the late-successional forests, the presence of ectomycorrhizal hyphae promotes SOC decomposition and nutrient cycle by increasing soil nitrogen and phosphorus degrading enzyme activity as well as saprotrophic microbial richness. Across early- to late-successional forests, mycorrhizal priming effects on SOC decomposition explain a slow-down in the capacity of older forests to sequester soil C. Our findings suggest that a transition from AM to EcM forests supporting greater C decomposition can halt the capacity of forests to provide nature-based global climate change solutions.


Assuntos
Sequestro de Carbono , Florestas , Micorrizas , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Solo/química , Carbono/análise , Mudança Climática , Conservação dos Recursos Naturais
6.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822535

RESUMO

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Assuntos
Micorrizas , Nitrogênio , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Micorrizas/metabolismo , Nitrogênio/metabolismo , Solo/química , Plantas/metabolismo , Plantas/microbiologia , Ecossistema
7.
Sci Total Environ ; 926: 171985, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537829

RESUMO

The impacts of wildfire on vegetation and soil erosion have been studied for decades aiming to bring back ecosystems after fire perturbance. However, the influence of fires on above and belowground biodiversity remains far less understood. Biodiversity is critical for supporting ecosystem function, and this data scarcity is hampering managers in adopting effective practices for a proper restoration of burned ecosystems. This limitation could be overcome by future research that should focus post-fire diversity of plants and soil biota, by (i) analysing the environmental factors driving post-fire evolutionary trends; (ii) exploring their interrelations across different spatial and temporal scales; (iii) identifying the variability across fires of different severities and frequency; (iv) ascertaining the post-fire response of individual plant species and soil taxa to fire with or without application of post-fire restoration actions.


Assuntos
Ecossistema , Incêndios , Biodiversidade , Plantas , Solo , Biologia
8.
Glob Chang Biol ; 30(1): e17027, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37946660

RESUMO

Grazing exclusion alters grassland soil aggregation, microbiome composition, and biogeochemical processes. However, the long-term effects of grazing exclusion on the microbial communities and nutrient dynamics within soil aggregates remain unclear. We conducted a 36-year exclusion experiment to investigate how grazing exclusion affects the soil microbial community and the associated soil functions within soil aggregates in a semiarid grassland. Long-term (36 years) grazing exclusion induced a shift in microbial communities, especially in the <2 mm aggregates, from high to low diversity compared to the grazing control. The reduced microbial diversity was accompanied by instability of fungal communities, extended distribution of fungal pathogens to >2 mm aggregates, and reduced carbon (C) sequestration potential thus revealing a negative impact of long-term GE. In contrast, 11-26 years of grazing exclusion greatly increased C sequestration and promoted nutrient cycling in soil aggregates and associated microbial functional genes. Moreover, the environmental characteristics of microhabitats (e.g., soil pH) altered the soil microbiome and strongly contributed to C sequestration. Our findings reveal new evidence from soil microbiology for optimizing grazing exclusion duration to maintain multiple belowground ecosystem functions, providing promising suggestions for climate-smart and resource-efficient grasslands.


Assuntos
Ecossistema , Microbiota , Solo/química , Pradaria , Herbivoria , Nitrogênio , Microbiologia do Solo , Carbono
9.
Front Microbiol ; 14: 1240634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779719

RESUMO

Introduction: Soil bacteria play a crucial role in the terrestrial nitrogen (N) cycle by fixing atmospheric N2, and this process is influenced by both biotic and abiotic factors. The diversity of N2-fixing bacteria (NFB) directly reflects the efficiency of soil N fixation, and the diversity of NFB in degraded alpine meadow soil may change with different N fertilizing levels and varied slopes. However, how N addition affects the diversity of NFB in degraded alpine meadows, and whether this influence varies with slope, remain poorly understood. Methods: We conducted an N addition field experiment at three levels (2, 5, and 10 g N·m-2·a-1) to study the effects of N addition on soil NFB diversity on two different slopes in a degraded meadow on the Tibetan Plateau. Results: There were significant differences in the dominant bacterial species between the two slopes. The Chao1 index, species richness, and beta diversity of NFB did not differ significantly between slopes, but the Shannon index did. Interestingly, N addition had no effect on the diversity of NFB or the abundance of dominant bacteria. However, we did observe a significant change in some low-abundance NFB. The community composition and diversity of NFB were significantly positively correlated with slope and soil physicochemical properties (e.g., total potassium, pH, and total nitrogen). Conclusions: Our study highlights the variation in NFB communities among different slopes in degraded alpine meadows and their resilience to exogenous N addition. Our results also underscore the importance of considering the effects of micro-topography on soil microbial communities in future studies of alpine ecosystems.

10.
Sci Total Environ ; 897: 166171, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37582442

RESUMO

Biochar has been shown to reduce soil greenhouse gas (GHG) and increase nutrient retention in soil; however, the interaction between biochar and organic amendments on GHG emissions remain largely unclear. In this study, we collected 162 two-factor observations to explore how biochar and organic amendments jointly affect soil GHG emissions. Our results showed that biochar addition significantly increased soil CO2 emission by 8.62 %, but reduced CH4 and N2O emissions by 27.0 % and 23.9 %, respectively. Meanwhile, organic amendments and the co-application with biochar resulted in an increase of global warming potential based on the 100-year time horizon (GWP100) by an average of 18.3 % and 26.1 %. More importantly, the interactive effect of biochar and organic amendments on CO2 emission was antagonistic (the combined effect was weaker than the sum of their individual effects), while additive on CH4 and N2O emissions. Additionally, our results suggested that when biochar is co-applied with organic amendments, soil GHG emissions were largely influenced by soil initial total carbon, soil texture, and biochar feedstocks. Our work highlights the important interactive effects of biochar and organic amendments on soil GHG emissions, and provides new insights for promoting ecosystem sustainability as well as mitigating future climate change.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Solo , Ecossistema , Dióxido de Carbono/análise , Óxido Nitroso/análise , Carvão Vegetal , Metano/análise , Agricultura/métodos
11.
Glob Chang Biol ; 29(22): 6276-6285, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37578170

RESUMO

The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.

12.
Opt Lett ; 48(15): 3985-3988, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527099

RESUMO

In this Letter, we demonstrate and experimentally verify the application of three-core photonic crystal fiber (3C-PCF) for the in-line detection of fully polarized states. We prove the response of 3C-PCF to full-polarization states under multi-core polarization interference through experiments. The sensitivity at 1472 nm is 0.0273 nm/rad, and the linear response is better than 98.9% (the optimal operating wavelength can be designed in the range of 1470 to 1570 nm). With the advantages of an all-fiber integrated system, robustness, and wide wavelength coverage, our design holds great promise for facilitating fiber-optic-integrated polarization meters for optical fiber communication and biomedical diagnostic applications.

13.
Glob Chang Biol ; 29(12): 3476-3488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36931867

RESUMO

Root exudates are an important pathway for plant-microbial interactions and are highly sensitive to climate change. However, how extreme drought affects root exudates and the main components, as well as species-specific differences in response magnitude and direction, are poorly understood. In this study, root exudation rates of total carbon (C) and its components (e.g., sugar, organic acid, and amino acid) were measured under the control and extreme drought treatments (i.e., 70% throughfall reduction) by in situ collection of four tree species with different growth rates in a subtropical forest. We also quantified soil properties, root morphological traits, and mycorrhizal infection rates to examine the driving factors underlying variations in root exudation. Our results showed that extreme drought significantly decreased root exudation rates of total C, sugar, and amino acid by 17.8%, 30.8%, and 35.0%, respectively, but increased root exudation rate of organic acid by 38.6%, which were largely associated with drought-induced changes in tree growth rates, root morphological traits, and mycorrhizal infection rates. Specifically, trees with relatively high growth rates were more responsive to drought for root exudation rates compared with those with relatively low growth rates, which were closely related to root morphological traits and mycorrhizal infection rates. These findings highlight the importance of plant growth strategy in mediating drought-induced changes in root exudation rates. The coordinations among root exudation rates, root morphological traits, and mycorrhizal symbioses in response to drought could be incorporated into land surface models to improve the prediction of climate change impacts on rhizosphere C dynamics in forest ecosystems.


Assuntos
Ecossistema , Micorrizas , Raízes de Plantas/metabolismo , Secas , Florestas , Micorrizas/metabolismo , Árvores , Exsudatos e Transudatos/metabolismo , Compostos Orgânicos/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Solo/química , Açúcares/análise , Açúcares/metabolismo , Exsudatos de Plantas/análise , Exsudatos de Plantas/metabolismo
14.
Sci Total Environ ; 863: 160775, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36509268

RESUMO

Elevated atmospheric CO2 concentrations [CO2] potentially alter carbon (C) and phosphorus (P) cycles in terrestrial ecosystems. Although numerous field experiments and a few meta-analyses have been conducted, it is still largely unclear how the P cycle affects plant biomass responses under elevated [CO2] globally. Here, we conducted a global synthesis by analyzing 111 studies on the responses of above- and belowground P cycling to elevated [CO2], to examine how changes in the P cycle affect the plant biomass response to elevated [CO2]. Our results show that elevated [CO2] significantly increased plant aboveground biomass (+13 %), stem biomass (+4 %), leaf biomass (+11 %), belowground biomass (+12 %), and the root: shoot ratio (+7 %). Effects of elevated [CO2] on aboveground biomass, belowground biomass, and root: shoot ratio were best explained by plant P uptake. In addition, elevated [CO2]-induced changes in the aboveground P pool, leaf P pool, and leaf P concentration were modulated by ecological drivers, such as ΔCO2, experimental duration, and aridity index. Our findings highlight the importance of plant P uptake for both above- and belowground plant biomass responses under elevated [CO2], which should be considered in future biosphere models to improve predictions of terrestrial carbon-climate feedbacks.


Assuntos
Biomassa , Dióxido de Carbono , Plantas , Carbono/análise , Dióxido de Carbono/análise , Ecossistema , Fósforo/metabolismo , Plantas/metabolismo , Solo/química
15.
Glob Chang Biol ; 29(4): 1178-1187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36371668

RESUMO

Multiple lines of existing evidence suggest that increasing CO2 emission from soils in response to rising temperature could accelerate global warming. However, in experimental studies, the initial positive response of soil heterotrophic respiration (RH ) to warming often weakens over time (referred to apparent thermal acclimation). If the decreased RH is driven by thermal adaptation of soil microbial community, the potential for soil carbon (C) losses would be reduced substantially. In the meanwhile, the response could equally be caused by substrate depletion, and would then reflect the gradual loss of soil C. To address uncertainties regarding the causes of apparent thermal acclimation, we carried out sterilization and inoculation experiments using the soil samples from an alpine meadow with 6 years of warming and nitrogen (N) addition. We demonstrate that substrate depletion, rather than microbial adaptation, determined the response of RH to long-term warming. Furthermore, N addition appeared to alleviate the apparent acclimation of RH to warming. Our study provides strong empirical support for substrate availability being the cause of the apparent acclimation of soil microbial respiration to temperature. Thus, these mechanistic insights could facilitate efforts of biogeochemical modeling to accurately project soil C stocks in the future climate.


Assuntos
Microbiologia do Solo , Solo , Processos Heterotróficos , Aquecimento Global , Aclimatação , Temperatura , Carbono , Respiração
16.
iScience ; 25(10): 105245, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36262314

RESUMO

The ability to accurately and cost-friendly monitor heavy metals in environmental solutions such as drinking or tap water is of great significance to the human health. We report a twisted fiber-based sensing mechanism that can realize highly accurate detection of Cd2+ concentration in water solution. The basic design is a twisted single-core fiber simply coated with a propylene thiourea membrane that can absorb Cd2+. Due to the twisting effect, light in the core can scatter into the cladding, yielding optical coupling and interference. We experimentally prove that both positions and amplitudes of interference dips in the sample transmission spectrum can effectively and linearly response to the change of Cd2+ concentration at the level of 10-11 mol/L. With bimodal calibration, such sensor can realize accurate and real-time monitor in a stable and nontoxic way. These excellent characteristics indicate promising potential in the field of biochemical and integrated optical sensing.

17.
Nat Commun ; 13(1): 4914, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987902

RESUMO

Biomass allocation in plants is fundamental for understanding and predicting terrestrial carbon storage. Yet, our knowledge regarding warming effects on root: shoot ratio (R/S) remains limited. Here, we present a meta-analysis encompassing more than 300 studies and including angiosperms and gymnosperms as well as different biomes (cropland, desert, forest, grassland, tundra, and wetland). The meta-analysis shows that average warming of 2.50 °C (median = 2 °C) significantly increases biomass allocation to roots with a mean increase of 8.1% in R/S. Two factors associate significantly with this response to warming: mean annual precipitation and the type of mycorrhizal fungi associated with plants. Warming-induced allocation to roots is greater in drier habitats when compared to shoots (+15.1% in R/S), while lower in wetter habitats (+4.9% in R/S). This R/S pattern is more frequent in plants associated with arbuscular mycorrhizal fungi, compared to ectomycorrhizal fungi. These results show that precipitation variability and mycorrhizal association can affect terrestrial carbon dynamics by influencing biomass allocation strategies in a warmer world, suggesting that climate change could influence belowground C sequestration.


Assuntos
Micorrizas , Biomassa , Carbono , Ecossistema , Micorrizas/fisiologia , Raízes de Plantas , Plantas/microbiologia
18.
Sci Total Environ ; 851(Pt 1): 158243, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007637

RESUMO

Plants may slow global warming through enhanced growth, because increased levels of photosynthesis stimulate the land carbon (C) sink. However, how climate warming affects plant C storage globally and key drivers determining the response of plant C storage to climate warming remains unclear, causing uncertainty in climate projections. We performed a comprehensive meta-analysis, compiling 393 observations from 99 warming studies to examine the global patterns of plant C storage responses to climate warming and explore the key drivers. Warming significantly increased total biomass (+8.4 %), aboveground biomass (+12.6 %) and belowground biomass (+10.1 %). The effect of experimental warming on plant biomass was best explained by the availability of soil nitrogen (N) and water. Across the entire dataset, warming-induced changes in total, aboveground and belowground biomass all positively correlated with soil C:N ratio, an indicator of soil N availability. In addition, warming stimulated plant biomass more strongly in humid than in dry ecosystems, and warming tended to decrease root:shoot ratios at high soil C:N ratios. Together, these results suggest dual controls of warming effects on plant C storage; warming increases plant growth in ecosystems where N is limiting plant growth, but it reduces plant growth where water availability is limiting plant growth.


Assuntos
Carbono , Nitrogênio , Biomassa , Ecossistema , Nitrogênio/análise , Plantas , Solo , Água/análise
19.
Glob Chang Biol ; 28(18): 5492-5504, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35737821

RESUMO

Grazing and global change (e.g., warming, nitrogen deposition, and altered precipitation) both contribute to biodiversity loss and alter ecosystem structure and functioning. However, how grazing and global change interactively influence plant diversity and ecosystem productivity, and their relationship remains unclear at the global scale. Here, we synthesized 73 field studies to quantify the individual and/or interactive effects of grazing and global change factors on biodiversity-productivity relationship in grasslands. Our results showed that grazing significantly reduced plant richness by 3.7% and aboveground net primary productivity (ANPP) by 29.1%, but increased belowground net primary productivity (BNPP) by 9.3%. Global change factors, however, decreased richness by 8.0% but increased ANPP and BNPP by 13.4% and 14.9%, respectively. Interestingly, the strength of the change in biodiversity in response to grazing was positively correlated with the strength of the change in BNPP. Yet, global change flipped these relationships from positive to negative even when combined with grazing. These results indicate that the impacts of global change factors are more dominant than grazing on the belowground biodiversity-productivity relationship, which is contrary to the pattern of aboveground one. Therefore, incorporating global change factors with herbivore grazing into Earth system models is necessary to accurately predict climate-grassland carbon cycle feedbacks in the Anthropocene.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Ciclo do Carbono , Mudança Climática , Plantas
20.
Materials (Basel) ; 15(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591481

RESUMO

The 4f135d-4f14 energy transition of Yb2+ ions can cover the whole white light wavelength, Yb2+-doped materials have thus been a hot research field. In order to obtain a white light source, many kinds of Yb2+-doped materials have been prepared. In this study, divalent Yb2+-doped silica fiber was fabricated using rod-in-tube technology. The fiber core of Yb2+-doped silica glass was prepared with high-temperature melting technology under vacuum conditions. The spectroscopic properties of the Yb2+-doped glass and fiber were studied. The experiments indicate that divalent Yb2+-doped glass has a high quantum efficiency and super-broadband fluorescence in the visible region with an excitation wavelength of 405 nm. In addition, the results suggest that Yb2+-doped fiber has a potential for application in visible fiber lasers and fiber amplification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA