Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Viruses ; 15(9)2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37766224

RESUMO

Midges are widely distributed globally and can transmit various human and animal diseases through blood-sucking. As part of this study, 259,300 midges were collected from four districts in Yunnan province, China, to detect the viral richness and diversity using metavirome analysis techniques. As many as 26 virus families were detected, and the partial sequences of bluetongue virus (BTV), dengue virus (DENV), and Getah virus (GETV) were identified by phylogenetic analysis and PCR amplification. Two BTV gene fragments, 866 bps for the VP2 gene of BTV type 16 and 655 bps for the VP5 gene of BTV type 21, were amplified. The nucleotide sequence identities of the two amplified BTV fragments were 94.46% and 98.81%, respectively, with two classical BTV-16 (GenBank: JN671907) and BTV-21 strains (GenBank: MK250961) isolated in Yunnan province. Furthermore, the BTV-16 DH2021 strain was successfully isolated in C6/36 cells, and the peak value of the copy number reached 3.13 × 107 copies/µL after five consecutive BHK-21 cell passages. Moreover, two 2054 bps fragments including the E gene of DENV genotype Asia II were amplified and shared the highest identity with the DENV strain isolated in New Guinea in 1944. A length of 656 bps GETV gene sequence encoded the partial capsid protein, and it shared the highest identity of 99.68% with the GETV isolated from Shandong province, China, in 2017. Overall, this study emphasizes the importance of implementing prevention and control strategies for viral diseases transmitted by midges in China.


Assuntos
Alphavirus , Vírus Bluetongue , Animais , Humanos , China/epidemiologia , Filogenia , Ásia , Proteínas do Capsídeo/genética
2.
Front Vet Sci ; 10: 1137392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124563

RESUMO

Since 2013, a dengue epidemic has broken out in Yunnan, China and neighboring countries. However, after the COVID-19 pandemic in 2019, the number of dengue cases decreased significantly. In this retrospective study, epidemiological and genetic diversity characterizations of dengue viruses (DENV) isolated in Yunnan between 2017 and 2018 were performed. The results showed that the dengue outbreak in Yunnan from 2017 to 2018 was mainly caused by DENV1 (genotype I and genotype V) and DENV2 (Asia I, Asia II, and Cosmopolitan). Furthermore, correlation analysis indicated a significant positive correlation between the number of imported and local cases (correlation coefficient = 0.936). Multiple sequence alignment and phylogenetic divergence analysis revealed that the local isolates are closely related to the isolates from Myanmar and Laos. Interestingly, recombination analysis found that the DENV1 and DENV2 isolates in this study had widespread intra-serotype recombination. Taken together, the results of the epidemiological investigation imply that the dengue outbreak in Yunnan was primarily due to imported cases. This study provides a new reference for further investigations on the prevalence and molecular epidemiology of DENV in Yunnan, China.

3.
Malar J ; 21(1): 399, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585690

RESUMO

BACKGROUND: Anopheles maculatus, Anopheles minimus and Anopheles dirus are the major vectors of malaria transmission in the Greater Mekong Subregion (GMS). The malaria burden in this region has decreased significantly in recent years as all GMS countries progress towards malaria elimination. It is necessary to investigate the Anopheles diversity and abundance status and assess the Plasmodium infection rates to understand the malaria transmission potential of these vector species in GMS countries to guide the development of up-to-date vector control strategies and interventions. METHODS: A survey of mosquitoes was conducted in Stung Treng, Sainyabuli and Phongsaly Provinces on the Cambodia-Laos, Thailand-Laos and China-Laos borders, respectively. Mosquito collection was done by overnight trapping at sentinel sites in each province. After morphological identification, the 18S rRNA-based nested-PCR was performed to detect malaria parasites in the captured Anopheles mosquitoes. RESULTS: A total of 18 965 mosquitoes comprising of 35 species of 2 subgenera (Subgenus Anopheles and Subgenus Cellia) and 4 tribes (Tribes Culicini, Aedini, Armigerini and Mansoniini) were captured. Tribe Culicini accounted for 85.66% of captures, followed by Subgenus Anopheles (8.15%). Anopheles sinensis dominated the Subgenus Anopheles by 99.81%. Plasmodium-infection was found in 25 out of the 1 683 individual or pooled samples of Anopheles. Among the 25 positive samples, 19, 5 and 1 were collected from Loum, Pangkhom and Siem Pang village, respectively. Eight Anopheles species were found infected with Plasmodium, i.e., An. sinensis, Anopheles kochi, Anopheles vagus, An. minimus, Anopheles annularis, Anopheles philippinensis, Anopheles tessellatus and An. dirus. The infection rates of Plasmodium falciparum, Plasmodium vivax and mixture of Plasmodium parasite species were 0.12% (2/1 683), 1.31% (22/1 683) and 0.06% (1/1 683), respectively. CONCLUSIONS: Overall, this survey re-confirmed that multiple Anopheles species carry malaria parasites in the international border areas of the GMS countries. Anopheles sinensis dominated the Anopheles collections and as carriers of malaria parasites, therefore may play a significant role in malaria transmission. More extensive investigations of malaria vectors are required to reveal the detailed vector biology, ecology, behaviour, and genetics in GMS regions in order to assist with the planning and implementation of improved malaria control strategies.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Malária/prevenção & controle , Anopheles/parasitologia , Tailândia/epidemiologia , Laos , Camboja , Insetos Vetores/parasitologia , Mosquitos Vetores , China
4.
Cell Rep ; 41(4): 111527, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288711

RESUMO

The growing threat of insecticide resistance prompts the urgent need to develop additional tools for mosquito control. Entomopathogenic fungi provide an eco-friendly alternative to chemical insecticides. One limitation to the use of mycoinsecticides is their relatively low virulence. Here, we report an approach for suppressing mosquito immunity and increasing fungal virulence. We engineered Beauveria bassiana to express Aedes immunosuppressive microRNAs (miRNAs) to induce host RNA interference (RNAi) immune responses. We show that engineered strains can produce and deliver the miRNAs into host cells to activate cross-kingdom RNAi during infection and suppress mosquito immunity by targeting multiple host genes, thereby dramatically increasing fungal virulence against Aedes aegypti and Galleria mellonella larvae. Importantly, expressing host miRNAs also significantly increases fungal virulence against insecticide-resistant mosquitoes, creating potential for insecticide-resistance management. This pathogen-mediated RNAi (pmRNAi)-based approach provides an innovative strategy to enhance the efficacy of fungal insecticides and eliminate the likelihood of resistance development.


Assuntos
Aedes , Beauveria , Inseticidas , MicroRNAs , Animais , Inseticidas/farmacologia , Interferência de RNA , MicroRNAs/genética , Controle de Mosquitos , Aedes/genética , Beauveria/genética
5.
Comput Math Methods Med ; 2022: 2515432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693260

RESUMO

Dengue as an acute infectious disease threatens global public health and has sparked broad research interest. However, existing studies generally ignore the spatial dependencies involved in dengue forecast, and consideration of temporal periodicity is absent. In this work, we propose a spatiotemporal component fusion model (STCFM) to solve the dengue risk forecast issue. Considering that mosquitoes are an important vector of dengue transmission, we introduce feature factors involving mosquito abundance and spatiotemporal lags to model temporal trends and spatial distributions separately on the basis of statistical properties. Specifically, we conduct multiscale modeling of temporal dependencies to enhance the forecast capability of relevant periods by capturing the historical variation patterns of the data across different segments in the temporal dimension. In the spatial dimension, we quantify the multivariate spatial correlation analysis as additional features to strengthen the spatial feature representation and adopt the ConvLSTM model to learn spatial dependencies adequately. The final forecast results are obtained by stacking strategy fusion in ensemble learning. We conduct experiments on real dengue datasets. The results indicate that STCFM improves prediction accuracy through effective spatiotemporal feature representations and outperforms candidate models with a reasonable component construction strategy.


Assuntos
Aedes , Dengue , Animais , Dengue/epidemiologia , Previsões , Humanos , Mosquitos Vetores , Análise Espaço-Temporal
6.
Sci Rep ; 12(1): 9844, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701460

RESUMO

Chikungunya virus (CHIKV), a highly infectious and rapidly spread viral pathogen, is classified as a pathogenic agent at the biosafety level 3. Operation of live authentic CHIKV needs a specific laboratory with the P3 or above containment, which greatly confines the CHIKV-associated studies. To establish an evaluation system of CHIKV that can be utilized in a BSL2 laboratory, we constructed a pseudovirus (PsV) system of CHIKV containing double reporter genes (ZsGreen1 and luciferase). The fluorescent ZsGreen1 is a convenient and cheap reporter for monitoring the efficiency of transfection and titration of PsV. The enzyme luciferase is a sensitive reporter for the application of PsV to neutralization assay or drug screening. The CHIKV PsV produced in this study, with a titer of up to 3.16 × 106 TU/ml, was confirmed by Western blotting and transmission electronic microscopy (TEM). Finally, we developed a microneutralization assay with the CHIKV PsV produced in this study, which was successfully applied to evaluate neutralizing activities of convalescent sera from CHIKV-infected patients. In summary, we have established a convenient and sensitive double-reporter CHIKV pseudovirus system, which provides a safe and effective platform for screening anti-CHIKV drugs and evaluating vaccines against CHIKV.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Anticorpos Neutralizantes , Anticorpos Antivirais , Febre de Chikungunya/diagnóstico , Vírus Chikungunya/genética , Genes Reporter , Humanos , Luciferases/genética , Testes de Neutralização
7.
Adv Parasitol ; 116: 33-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35752449

RESUMO

To understand how malaria could be eliminated in the original hyperendmic area for malaria along international borders in Yunnan Province, malaria situation and control were described on the basis of seven phases. At last the experiences and lessons of the program that reduced border malaria from hyperendmicity to malaria-free status were summarized. Malaria control and elimination area were particularly difficult in the Yunnan border. The achievement can be attributed to high political commitment, strategic and technical innovations based on the actual locality, effective collaboration and communication with neighbouring countries to carry out cross border interventions. Other border areas might perform their own pilot interventions based on their local context, including malaria burden, governing system, health service structure contextualized based on their socioeconomic development and ecology, and then a local decision could be made according to their own trial results.


Assuntos
Malária , China/epidemiologia , Ecologia , Humanos , Malária/epidemiologia , Malária/prevenção & controle
8.
Infect Dis Poverty ; 11(1): 51, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538510

RESUMO

BACKGROUND: Border malaria is one of the most intractable problems hindering malaria elimination worldwide. Movement of both the human population and anopheline mosquitoes infected with Plasmodium spp. can cause cross-border malaria transmission. The Yunnan border area was still hyperendemic for malaria in the early part of this century. The objective of this case study was to analyze the strategies, interventions and impacts of malaria control and elimination in the Yunnan border area. MAIN TEXT: A total of 10,349 malaria cases and 17.1 per 10,000 person-years of annual parasite incidence (API) were reported in the border area in 2003. Based on natural village-based stratification, integrated interventions, including mass drug administration for radical cures and preventive treatment, clinically presumptive treatment of all febrile patients for malaria and indoor residual spraying or dipping bed nets with insecticides were successfully carried out from 2003 to 2013. The overall API was reduced to 0.6 per 10,000 person-years by 2013, while effective cross-border collaboration interventions dramatically reduced the malaria burden in the neighbouring border areas of Myanmar. From 2014 forward, the comprehensive strategy, including universal coverage of surveillance to detect malaria cases, a rapid response to possible malaria cases and effective border collaboration with neighbouring areas, successfully eliminated malaria and prevented reintroduction of malaria transmission in the Yunnan border area. CONCLUSIONS: In Yunnan malaria burden has successfully reduced by dynamically accurate stratification and comprehensive interventions; and then the region achieved elimination and prevented reintroduction of malaria transmission through intensive surveillance, rapid response and border collaboration. Other border areas should perform their own intervention trials to develop their own effective strategy.


Assuntos
Culicidae , Inseticidas , Malária , Animais , China/epidemiologia , Humanos , Incidência , Malária/epidemiologia , Malária/prevenção & controle
9.
Malar J ; 21(1): 91, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35300704

RESUMO

BACKGROUND: Few studies have been conducted to investigate the distribution of mosquito vectors and the population structure of secondary vectors in the border region of Cambodia-Laos. The aim of this work was to study the mosquito diversity and molecular phylogeny of secondary vectors, i.e., Anopheles nivipes in this area. METHODS: 1440 adult mosquitoes were trapped in the Cambodia-Laos border. mtDNA-COII were amplified and sequenced from 53 An. nivipes DNA samples. Together with COII sequences deposited in GenBank, a total of 86 COII sequences were used for examining population variations, genetic differentiation, spatial population structure, population expansion, and gene flow patterns. RESULTS: The adult mosquitoes were classified into 5 genera and 27 species in this border region. The predominant genera were Culex (60.07%, 865/1440) and Anopheles (31.25%, 450/1440), and the major Anopheles species were An. nivipes (73.56%, 331/450) and Anopheles maculatus (14.22%, 64/450). Based on sequences analysis of COII, a high level of genetic differentiation was reported in two Northwest India (Cheema and Bathinda, Punjab) and Cambodia-Laos (Siem Pang, Stung treng) populations (FST = 0.97824, 0.97343, P < 0.05), as well as lower gene flow (Nm = 0.01112, 0.01365) in the An. nivipes populations. Phylogenetic analysis and SAMOVA revealed a gene barrier restricting gene flow among three An. nivipes populations. Mantel test suggested a significant correlation between geography and gene distance in all An. nivipes populations (Z = 44,983.1865, r = 0.5575, P = 0.0070). Neutrality test and Mismatch distribution revealed a recent population expansion of An. nivipes in the Cambodia-Laos population. CONCLUSIONS: Anopheles nivipes was one of the major Anopheles species in the Cambodia-Laos border. Based on sequences analysis of COII, a genetic barrier between Cambodia-Laos and two Indian populations was found, and a recent population expanding or selecting of An. nivipes occurred in the Cambodia-Laos population, suggesting that COII might be an effective marker for describing the molecular phylogeny of An. nivipes. Further investigation and continuous surveillance of An. nivipes are warranted in this region.


Assuntos
Anopheles , Animais , Anopheles/genética , Camboja , DNA Mitocondrial/genética , Laos , Filogenia
10.
Arch Virol ; 167(4): 1221-1223, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35277776

RESUMO

Banna virus (BAV) is a typical arbovirus whose infection is associated with fever and viral encephalitis. The whole genome of BAV is composed of 12 RNA segments. BAVs, which have been divided into three genotypes (A, B, and C) based on phylogenetic analysis of segment 12 or segment 9, are currently undergoing rapid evolution. Recent studies have shown that BAV variation can exceed intraspecific limits and generate novel viruses. In the current study, a new BAV strain, named 113c5, was isolated from Culex tritaeniorhynchus and found to be a member of genotype A2 based on phylogenetic analysis of segments 9 and 12. The complete genome sequence of the new BAV strain described in the current study might contribute to the surveillance of evolutionary characteristics of BAVs.


Assuntos
Coltivirus , Culex , Vírus , Animais , China , Coltivirus/genética , Genoma Viral , Filogenia , Vírus/genética
12.
Parasit Vectors ; 15(1): 94, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303948

RESUMO

BACKGROUND: To develop an effective malaria vector intervention method in forested international border regions within the Greater Mekong Subregion (GMS), more in-depth studies should be conducted on local Anopheles species composition and bionomic features. There is a paucity of comprehensive surveys of biodiversity integrating morphological and molecular species identification conducted within the border of Laos and Cambodia. METHODS: A total of 2394 adult mosquitoes were trapped in the Cambodia-Laos border region. We first performed morphological identification of Anopheles mosquitoes and subsequently performed molecular identification using 412 recombinant DNA-internal transcribed spacer 2 (rDNA-ITS2) and 391 mitochondrial DNA-cytochrome c oxidase subunit 2 (mtDNA-COII) sequences. The molecular and morphological identification results were compared, and phylogenetic analysis of rDNA-ITS2 and mtDNA-COII was conducted for the sequence divergence among species. RESULTS: Thirteen distinct species of Anopheles were molecularly identified in a 26,415 km2 border region in Siem Pang (Cambodia) and Pathoomphone (Laos). According to the comparisons of morphological and molecular identity, the interpretation of local species composition for dominant species in the Cambodia-Laos border (An. dirus, An. maculatus, An. philippinensis, An. kochi and An. sinensis) achieved the highest accuracy of morphological identification, from 98.37 to 100%. In contrast, the other species which were molecularly identified were less frequently identified correctly (0-58.3%) by morphological methods. The average rDNA-ITS2 and mtDNA-COII interspecific divergence was respectively 318 times and 15 times higher than their average intraspecific divergence. The barcoding gap ranged from 0.042 to 0.193 for rDNA-ITS2, and from 0.033 to 0.047 for mtDNA-COII. CONCLUSIONS: The Cambodia-Laos border hosts a high diversity of Anopheles species. The morphological identification of Anopheles species provides higher accuracy for dominant species than for other species. Molecular methods combined with morphological analysis to determine species composition, population dynamics and bionomic characteristics can facilitate a better understanding of the factors driving malaria transmission and the effects of interventions, and can aid in achieving the goal of eliminating malaria.


Assuntos
Anopheles , Malária , Animais , Camboja , Florestas , Laos , Mosquitos Vetores/genética , Filogenia
13.
Virol Sin ; 37(1): 19-29, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35234619

RESUMO

After dengue virus (DENV) infection, antibody-dependent enhancement (ADE) is easy to occur when the neutralizing antibody (NAb) gradually decreases to a sub-neutralizing concentration. In this cohort surveillance, we utilized sera samples collected from dengue fever patients at different convalescent phases in Jinghong City, to investigate the dynamic change rule of DENV-specific antibodies, and to analyze the risk of ADE caused by secondary infection with heterologous serotypes DENVs. For baseline serosurvey, 191 four-year and 99 six-year sera samples during convalescence were collected in 2017 and 2019, respectively. The positive rate of DENV-specific immunoglobulin G was 98.4% in 2017, which significantly decreased to 82.8% in 2019. The geometric mean titer (GMT) of NAb decreased from 1:155.35 to 1:46.66. Among 290 overall samples, 73 paired consecutive samples were used for follow-up serosurvey. In four-year sera, the GMTs of NAb against DENV-3 and cross-reactive antibodies against DENV-1, DENV-2 and DENV-4 were 1:167.70, 1:13.80, 1:18.54 and 1:45.26, respectively, which decreased to 1:53.18, 1:10.30, 1:14.60 and 1:8.17 in six-year sera. In age-stratified analysis, due to the increasing number of ADE positive samples from 2017 to 2019 in 31-40 and 51-60 years groups, the risk of ADE in DENV-4 infection was positively associated with the extension of convalescent phase, and the odd ratio was higher than other groups. With the recovery period lengthened, the risk of secondary infection with DENV-1 and DENV-2 was reduced. Our results offer essential experimental data for risk prediction of severe dengue in hyper-endemic dengue areas, and provide crucial scientific insight for the development of effective dengue vaccines.


Assuntos
Vírus da Dengue , Dengue , Dengue Grave , Anticorpos Neutralizantes , Anticorpos Antivirais , China/epidemiologia , Humanos , Estudos Soroepidemiológicos
14.
Front Cell Infect Microbiol ; 12: 849662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223559

RESUMO

We collected 5,500 mosquitoes belonging to six species in three locations in China. Their viromes were tested using metagenomic sequencing and bioinformatic analysis. The affluent viral sequences that were detected and annotated belong to 22 viral taxonomic families. Then, PCR was performed to confirm the results, followed by phylogenetic analysis. Herein, part of mosquito virome was identified, including chikungunya virus (CHIKV), Getah virus (GETV), and Ross river virus (RRV). After metagenomic analysis, seven CHIKV sequences were verified by PCR amplification, among which CHIKV-China/YN2018-1 had the highest homology with the CHIKV isolated in Senegal, 1983, with a nucleotide (nt) identity of at least 81%, belonging to genotype West Africa viral genes. Five GETV sequences were identified, which had a high homology with the GETV sequences isolated from Equus caballus in Japan, 1978, with a (nt) identity of at least 97%. The newly isolated virus CHIKV-China/YN2018-1 became more infectious after passage of the BHK-21 cell line to the Vero cell line. The newly identified RRV gene had the highest homology with the 2006 RRV isolate from Australia, with a (nt) identity of at least 94%. In addition, numerous known and unknown viruses have also been detected in mosquitoes from Yunnan province, China, and propagation tests will be carried out.


Assuntos
Febre de Chikungunya , Culicidae , Vírus , Animais , China , Cavalos , Humanos , Filogenia , Ross River virus/genética , Togaviridae , Viroma , Vírus/genética
15.
J Med Virol ; 94(2): 499-506, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34453756

RESUMO

Chikungunya fever is an acute infectious disease caused by the chikungunya virus (CHIKV) that is characterized by fever, rash, and joint pain. CHIKV has infected millions of people in Africa, Asia, America, and Europe since it re-emerged in the Indian Ocean region in 2004. Here, we report an outbreak of Chikungunya fever that occurred in Ruili of Yunnan Province, a city located on the border between China and Myanmar, in September 2019. The outbreak lasted for three months from September to December. Overall, 112 cases were confirmed by a real-time reverse-transcription polymerase chain reaction in the Ruili People's Hospital, and they showed apparent temporal, spatial, and population aggregation. Among them, 91 were local cases distributed in 19 communities of Ruili City, and 21 were imported cases. The number of female patients was higher than that of male patients, and most patients were between 20 and 60 years old. The main clinical manifestations included joint pain (91.96%), fever (86.61%), fatigue (58.04%), chills (57.14%), rash (48.21%), headache (39.29%), and so forth. Biochemical indexes revealed increased C-reactive protein (63.39%), lymphopenia (57.17%), increased hemoglobin (33.04%), neutrophilia (28.57%), and thrombocytopenia (16.07%). Phylogenetic analysis of the complete sequences indicated that the CHIKV strains in this outbreak belonged to the Indian Ocean clade of the East/Central/South African genotype. We speculated that this chikungunya outbreak might be caused by CHIKV-infected persons returning from Myanmar, and provided a reference for the formulation of effective treatment and prevention measures.


Assuntos
Febre de Chikungunya/epidemiologia , Febre de Chikungunya/fisiopatologia , Vírus Chikungunya/isolamento & purificação , Filogenia , Adulto , Artralgia/etiologia , Vírus Chikungunya/genética , China/epidemiologia , Cidades/epidemiologia , Surtos de Doenças , Feminino , Febre/etiologia , Genoma Viral/genética , Humanos , Leucopenia/etiologia , Masculino , Pessoa de Meia-Idade , Mianmar , Reação em Cadeia da Polimerase em Tempo Real , Trombocitopenia/etiologia , Adulto Jovem
16.
BMC Infect Dis ; 21(1): 1246, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906092

RESUMO

BACKGROUND: Cross-border malaria in Laiza City of Myanmar seriously affected Yingjiang County of China and compromised reaching the goal of malaria elimination by 2020. Since 2017, a pilot project on 3 + 1 strategy of joint cross-border malaria prevention and control was carried out for building a malaria buffer in these border areas. Here, 3 were the three preventive lines in China where different focalized approaches of malaria elimination were applied and + 1 was a defined border area in Myanmar where the integrated measures of malaria control were adopted. METHODS: A 5-year retrospective analysis (2015 to 2019) was conducted that included case detection, parasite prevalence and vector surveillance. Descriptive statistics was used and the incidence or rates were compared. The annual parasite incidence and the parasite prevalence rate in + 1 area of Myanmar, the annual importation rate in Yingjiang County of China and the density of An. minimus were statistically significant indictors to assess the effectiveness of the 3 + 1 strategy. RESULTS: In + 1 area of Myanmar from 2015 to 2019, the averaged annual parasite incidence was (59.11 ± 40.73)/1000 and Plasmodium vivax accounted for 96.27% of the total confirmed cases. After the pilot project, the annual parasite incidence dropped 89% from 104.77/1000 in 2016 to 12.18/1000 in 2019, the microscopic parasite prevalence rate dropped 100% from 0.34% in 2017 to zero in 2019 and the averaged density of An. Minimus per trap-night dropped 93% from 1.92 in June to 0.13 in September. The submicroscopic parasite prevalence rate increased from 1.15% in 2017 to 1.66% in 2019 without significant difference between the two surveys (P = 0.084). In Yingjiang County of China, neither indigenous nor introduced case was reported and 100% cases were imported from Myanmar since 2017. The averaged annual importation rate from 2015 to 2019 was (0.47 ± 0.15)/1000. After the pilot project, the annual importation rate dropped from 0.59/1000 in 2016 to 0.28/1000 in 2019 with an overall reduction of 53% in the whole county. The reduction was 67% (57.63/1000 to 18.01/1000) in the first preventive line, 52% (0.20/1000 to 0.10/1000) in the second preventive line and 36% (0.32/1000 to 0.22/1000) in the third preventive line. The averaged density of An. Minimus per trap-night in the first preventive line dropped 94% from 2.55 in June to 0.14 in September, without significant difference from that of + 1 area of Myanmar (Z value = - 1.18, P value = 0.24). CONCLUSION: The pilot project on 3 + 1 strategy has been significantly effective in the study areas and a buffer zone of border malaria was successfully established between Laiza City of Myanmar and Yingjiang County of China.


Assuntos
Malária , China/epidemiologia , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Mianmar/epidemiologia , Projetos Piloto , Estudos Retrospectivos
17.
Emerg Infect Dis ; 27(11): 2869-2873, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670652

RESUMO

Malaria cases have dramatically declined in China along the Myanmar border, attributed mainly to adoption of the 1-3-7 surveillance and response approach. No indigenous cases have been reported in China since 2017. Counties in the middle and southern part of the border area have a higher risk for malaria importation and reestablishment after elimination.


Assuntos
Malária , China/epidemiologia , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Mianmar/epidemiologia
18.
Malar J ; 20(1): 396, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627264

RESUMO

BACKGROUND: Eliminating malaria and preventing re-establishment of malaria transmission in border areas requires universal coverage of malaria surveillance and a rapid response to any threats (i.e. malaria cues) of re-establishing transmission. MAIN TEXT: Strategy 1: Intensive interventions within 2.5 km-wide perimeter along the border to prevent border-spill malaria. The area within 2.5 km along the international border is the travel radius of anopheline mosquitoes. Comprehensive interventions should include: (1) proactive and passive case detection, (2) intensive vector surveillance, (3) evidence-based vector control, and (4) evidence-based preventative treatment with anti-malarial drugs. Strategy 2: Community-based malaria detection and screening of migrants and travellers in frontier townships. Un-permitted travellers cross borders frequently and present in frontier townships. Maintenance of intensified malaria surveillance should include: (1) passive malaria detection in the township hospitals, (2) seek assistance from villager leaders and health workers to monitor cross border travellers, and refer febrile patients to the township hospitals and (3) the county's Centre for Disease Control and Prevention maintain regular proactive case detection. Strategy 3: Universal coverage of malaria surveillance to detect malaria cues. Passive detection should be consolidated into the normal health service. Health services personnel should remain vigilant to ensure universal coverage of malaria detection and react promptly to any malaria cues. Strategy + 1: Strong collaborative support with neighbouring countries. Based on the agreement between the two countries, integrated control strategies should be carried out to reduce malaria burden for both countries. There should be a clear focus on the border areas between neighbouring countries. CONCLUSION: The 3 + 1 strategy is an experience summary of border malaria control and elimination, and then contributed to malaria elimination in Yunnan's border areas, China. Nevertheless, Yunnan still has remaining challenges of re-establishment of malaria transmission in the border areas, and the 3 + 1 strategy should still be carried out.


Assuntos
Transmissão de Doença Infecciosa/prevenção & controle , Malária/prevenção & controle , China , Emigração e Imigração , Humanos , Malária/diagnóstico , Malária/transmissão
19.
Parasit Vectors ; 14(1): 454, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488860

RESUMO

BACKGROUND: The Anopheles hyrcanus group, which includes 25 species, is widely distributed in the Oriental and Palaearctic regions. Given the difficulty in identifying cryptic or sibling species based on their morphological characteristics, molecular identification is regarded as an important complementary approach to traditional morphological taxonomy. The aim of this study was to reconstruct the phylogeny of the Hyrcanus group using DNA barcoding markers in order to determine the phylogenetic correlations of closely related taxa and to compare these markers in terms of identification efficiency and genetic divergence among species. METHODS: Based on data extracted from the GenBank database and data from the present study, we used 399 rDNA-ITS2 sequences of 19 species and 392 mtDNA-COII sequences of 14 species to reconstruct the molecular phylogeny of the Hyrcanus group across its worldwide range. We also compared the performance of rDNA-ITS2 against that of mtDNA-COII to assess the genetic divergence of closely related species within the Hyrcanus group. RESULTS: Average interspecific divergence for the rDNA-ITS2 sequence (0.376) was 125-fold higher than the average intraspecies divergence (0.003), and average interspecific divergence for the mtDNA-COII sequence (0.055) was eightfold higher than the average intraspecies divergence (0.007). The barcoding gap ranged from 0.015 to 0.073 for rDNA-ITS2, and from 0.017 to 0.025 for mtDNA-COII. Two sets of closely related species, namely, Anophels lesteri and An. paraliae, and An. sinensis, An. belenrae and An. kleini, were resolved by rDNA-ITS2. In contrast, the relationship of An. sinensis/An. belenrae/An. kleini was poorly defined in the COII tree. The neutrality test and mismatch distribution revealed that An. peditaeniatus, An. hyrcanus, An. sinensis and An. lesteri were likely to undergo hitchhiking or population expansion in accordance with both markers. In addition, the population of an important vivax malaria vector, An. sinensis, has experienced an expansion after a bottleneck in northern and southern Laos. CONCLUSIONS: The topology of the Hyrcanus group rDNA-ITS2 and mtDNA-COII trees conformed to the morphology-based taxonomy for species classification rather than for that for subgroup division. rDNA-ITS2 is considered to be a more reliable diagnostic tool than mtDNA-COII in terms of investigating the phylogenetic correlation between closely related mosquito species in the Hyrcanus group. Moreover, the population expansion of an important vivax malaria vector, An. sinensis, has underlined a potential risk of malaria transmission in northern and southern Laos. This study contributes to the molecular identification of the Anopheles hyrcanus group in vector surveillance.


Assuntos
Anopheles/classificação , Anopheles/genética , DNA Mitocondrial/genética , DNA Ribossômico/genética , Mosquitos Vetores/classificação , Mosquitos Vetores/genética , Filogenia , Animais , Código de Barras de DNA Taxonômico/métodos , DNA Intergênico/genética
20.
Front Cell Infect Microbiol ; 11: 733788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540721

RESUMO

Antimalarial drug resistance has emerged as a major threat to global malaria control efforts, particularly in the Greater Mekong Subregion (GMS). In this study, we analyzed the polymorphism and prevalence of molecular markers associated with resistance to first-line antimalarial drugs, such as artemisinin, chloroquine, and pyrimethamine, using blood samples collected from malaria patients in the China-Myanmar border region of the GMS from 2008 to 2017, including 225 cases of Plasmodium falciparum and 194 cases of Plasmodium vivax. In artemisinin resistance, only the C580Y mutation with low frequency was detected in pfk13, and no highly frequent stable mutation was found in pvk12. In chloroquine resistance, the frequency of K76T mutation in pfcrt was always high, and the frequency of double mutations in pvmdr1 of P. vivax has been steadily increasing every year. In pyrimidine resistance, pfdhfr and pvdhfr had relatively more complex mutant types associated with drug resistance sites, and the overall mutation rate was still high. Therefore, artemisinin-based combination therapies are still suitable for use as the first choice of antimalarial strategy in the China-Myanmar border region in the future.


Assuntos
Malária Falciparum , Preparações Farmacêuticas , Humanos , Malária Falciparum/epidemiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Mianmar/epidemiologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA