Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 298: 115609, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952968

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba L. is a rare tree species unique to China. Ginkgo biloba is a traditional Chinese medicinal with a long history, acting on the heart and lung meridians, and has been reported to have a significant effect on non-small cell lung cancer. However, the mechanism underlying this metabolic effect is poorly understood. AIM OF THE STUDY: To identify the active components of Ginkgo biloba extract that may have effects on non-small cell lung cancer and their mechanisms of metabolic regulation. MATERIALS AND METHODS: In this study, LC-MS/MS was used to investigate the chemical constituents of Ginkgo biloba extract. Network pharmacology was used to identify the active components potentially valuable in the treatment of non-small cell lung cancer. Antitumor activity was evaluated using CCK-8 and apoptosis assays. The mechanisms of metabolic regulation by the active components were further explored using untargeted metabolomics, targeted metabolomics, and western blot experiments. RESULTS: Network pharmacology and component analysis of Ginkgo biloba extract identified four ginkgolides that significantly affect non-small cell lung cancer. Their antiproliferative activity in A549 cells was evaluated using CCK-8 and apoptosis assays. The metabolomics results indicated that the ginkgolides had a significant regulatory effect on metabolic pathways related to one-carbon metabolisms, such as purine metabolism, glutathione metabolism, and the methionine cycle. Further targeted metabolomics analysis on one-carbon metabolism found that the ginkgolides may significantly affect the content of multiple metabolites in A549 cells, including purine, S-adenyl methionine, S-adenylyl homocysteine, and glutathione upregulated, and adenosine, tetrahydrofolate, and 10-Formyl-tetrahydrofolate significantly decreased. Notably, dihydrofolate reductase (DHFR) and methylenetetrahydrofolate dehydrogenases (MTHFR) were found to be altered after the treatment of ginkgolides. CONCLUSION: This in vitro study indicated that ginkgolides might inhibit the growth of A549 cells by targeting one-carbon metabolism. This study also demonstrated that metabolomics combined with network pharmacology is a powerful tool for identifying traditional Chinese medicines' active components and metabolic mechanisms.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carbono , Cromatografia Líquida , Ginkgo biloba/química , Ginkgolídeos/farmacologia , Glutationa , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Metabolômica/métodos , Metionina , Farmacologia em Rede , Purinas , Espectrometria de Massas em Tandem , Tetra-Hidrofolatos
2.
Chemphyschem ; 17(17): 2754-66, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27273010

RESUMO

The thermal topotactic transformation mechanism of MgAl layered double hydroxides (LDHs) is investigated by a combined theoretical and experimental study. Thermogravimetric differential thermal analysis (TG-DTA) results reveal that the LDH phase undergoes four key endothermic events at 230, 330, 450, and 800 °C. DFT calculations show that the LDH decomposes into CO2 and residual O atoms via a monodentate intermediate at 330 °C. At 450 °C, the metal cations almost maintain their original distribution within the LDH(001) facet during the thermal dehydration process, but migrate substantially along the c-axis direction perpendicular to the (001) facet; this indicates that the metal arrangement/dispersion in the LDH matrix is maintained two-dimensionally. A complete collapse of the layered structure occurs at 800 °C, which results in a totally disordered cation distribution and many holes in the final product. The structures of the simulated intermediates are highly consistent with the observed in situ powder XRD data for the MgAl LDH sample calcined at the corresponding temperatures. Understanding the structural topotactic transformation process of LDHs would provide helpful information for the design and preparation of metal/metal oxides functional materials derived from LDH precursors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA