RESUMO
Chickpea (Cicer arietinum L.) is a significant dietary source of flavonoids and the hypoglycemic activity were investigated in this study. Firstly, total twenty nine chickpea flavonoids were identified by UPLC-MS/MS with ononin, cyanidin-3-O-glucoside, astragalin, cynaroside, kaempferol-3-O-rutinoside, biochanin A, and daidzin being the most abundant among them. Our results demonstrated that chickpea flavonoids regulated glucose metabolism and lipid metabolism, and reduced oxidative stress in insulin resistance HepG2 cells. Furthermore, insulin resistance was ameliorated by chickpea flavonoids through the activation of insulin receptor substrate1 (IRS1), phosphoinositide 3-kinase (PI3K), and phosphorylated protein kinase B (Akt) in HepG2 cells. More importantly, key differential metabolites include L-tryptophan, L-tyrosine, l-glutamine and linoleic acid were reserved by chickpea flavonoids and correlated with glucolipid metabolism and oxidative stress in IR-HepG2 cells. In conclusion, these results indicated that chickpea flavonoids might act as potential natural products regulating insulin resistance in HepG2 cells.
RESUMO
Chickpeas are a very important legume crop and have abundant protein, carbohydrate, lipid, fiber, isoflavone, and mineral contents. The chemical compositions of the four chickpea species (Muying-1, Keying-1, Desi-1, Desi-2) from Xinjiang, China, were analyzed, and 46 different flavonoids in Muying-1 were detected. The moisture content ranged from 7.64 ± 0.01 to 7.89 ± 0.02 g/100 g, the content of starch in the kabuli chickpeas was greater than that in the desi chickpeas, the total ash content ranged from 2.59 ± 0.05 to 2.69 ± 0.03 g/100 g and the vitamin B1 content of the chickpeas ranged from 0.31 to 0.36 mg/100 g. The lipid content ranged from 6.35 to 9.35 g/100 g and the major fatty acids of chickpeas were linoleic, oleic, and palmitic acids. Both kabuli and desi chickpeas have a high content of unsaturated fatty acids (USFAs), Muying-1 and Desi-1 contained the highest level of linoleic acid, and Keying-1 had the highest oleic acid content. The protein level ranged from 19.79 ± 2.89 to 23.38 ± 0.30 g/100 g, and the main amino acids were aspartic acid, glutamic acid, and arginine acid. The four chickpea species had significant amounts of essential amino acids (EAAs). Forty-six varieties of flavonoids in Muying-1 were determined by ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-QqQ-MS) analysis, and there were higher levels of conjugate flavonoids (55.95%) than free flavonoids (44.05%). Isoflavones were the most abundant flavonoids in Muying-1, and among the isoflavones, daidzin had the highest content, followed by biochanin A and genistin. Muying-1 was rich in daidzin, biochanin A, genistin, troxerutin, isorhamnetin, astilbin, L-epicatechin, astragalin, acacetin, hyperoside, and myricitrin. Information provided in the study will be helpful to further understand the chemical composition of chickpeas and be beneficial to the development of chickpeas.
RESUMO
In this study, high-phosphorus beared microalgae was prepared by cultivating modification in high-phosphorus culture, and used for the enhanced Cd(II) biomineralization in soil. Batch experiment results showed that Chlorella sorokiniana FK was modified successfully in highly phosphate culture. Both intracellular P (Poly-P, 29.7 mg/kg) and surface P (phosphoryl based functional groups, 3.7 mol/kg) were greatly enhanced, and the Cd(II) removal capacity surged to 45.98 mg/g at equilibrium in the Langmuir simulation. The EXAFS analysis indicated that Cd tended to form a more stable bidentate complex (RPO4)2Cd when bounding with phosphate groups on the surface of the high-phosphorus microalgae. Moreover, high-phosphorus beared microalgae not only had higher immobilization amount of Cd(II), but also promoted immobilized Cd from adsorbed state to mineralized state. After high-phosphate cultured, increased density of P-related groups provided more adsorption sites, while the decomposition of intracellular Poly-P released phosphate ions into cell surface microenvironment, which combined and promoted the formation of Cd3(PO4)2/Cd(H2PO4)2 on cell surface. Cd-contaminated soil remediation experiments applying high-surface-phosphate beared microalgae further showed that more Cd stabilized as a residue fraction within 49 days. This study proposes that the high-phosphate culture strategy is a good way to improve the immobilization of heavy metals in soil induced by microorganisms.
Assuntos
Chlorella , Microalgas , Poluentes do Solo , Fósforo , Cádmio/química , Biomineralização , Solo/química , Poluentes do Solo/análise , Fosfatos/químicaRESUMO
Chickpeas are an important source of flavonoids in the human diet, and researchers have demonstrated that flavonoids have antidiabetic compositions in chickpeas. Because the NAD+/NADH redox balance is heavily perturbed in diabetes and complex I is the only site for NADH oxidation and NAD+ regeneration, in the present study, mitochondrial complex I was used as a target for anti-diabetes. The objective of this study was to investigate the effects of a crude chickpea flavonoid extract (CCFE) on NAD+/NADH redox imbalance and mitochondrial complex I dysfunction in the pancreas as well as oxidative stress in type 2 diabetes mellitus (T2DM) rats. Our results demonstrated that the degree of NAD+/NADH redox imbalance in the pancreas of T2DM rats was alleviated by CCFE, which is likely attributed to the inhibition of the polyol pathway and the decrease in poly ADP ribose polymerase (PARP) and sirtuin 3 (Sirt3) activities. Moreover, mitochondrial complex I dysfunction in the pancreas of T2DM rats was ameliorated by CCFE through the suppression of the activity of complex I. Furthermore, CCFE treatment could attenuate oxidative stress in T2DM rats, which was proven by the reduction in hydrogen peroxide (H2O2) and malondialdehyde (MDA) as well as the upregulation of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in serum. CCFE treatment significantly improved dyslipidemia in T2DM rats.
Assuntos
Cicer , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Complexo I de Transporte de Elétrons/metabolismo , Flavonoides/farmacologia , Peróxido de Hidrogênio/metabolismo , NAD/metabolismo , NAD/farmacologia , Oxirredução , Estresse Oxidativo , RatosRESUMO
PURPOSE: Patients with lung metastases (LM) from epithelial ovarian cancer (EOC) (EOCLM) usually have a poor prognosis. However, there is no consensus on the optimal management of these patients. In this study, we aimed to take a look at the incidence of LM and factors associated with its occurrence as well as the prognosis in newly diagnosed EOC with LM on a population level. METHODS: EOC patients diagnosed between the years 2010 and 2016 were identified from the Surveillance, Epidemiology, and End Results (SEER) program database. Multivariable logistic regression and multivariable Cox regression were used to investigate the factors that could predict the occurrence of and prognosis after diagnosis of EOC with LM. RESULTS: Of the 33,418 qualified EOC patients, 2240 (6.7%) were noted to have LMs at the time of EOC diagnosis. Higher T stage, N1 stage, advanced tumor grade, and elevated cancer antigen-125 levels were found to be associated with a higher risk of having LM at the time of EOC diagnosis. The median survival time after diagnosis with EOCLM was found to be 13.0 months (interquartile range: 3.0-34.0 months). Being unmarried and having mucinous histology were both associated with increased all-cause death risk from EOCLM. However, the primary tumor originated from the midline of ovaries, surgical management, and whether patient received chemotherapy or not predicted improved overall survival. The median survival time of patients was significantly longer for EOCLM cases managed surgically (31.0 months) versus those who did not have surgery (4.0 months), as well as EOCLM cases received chemotherapy (23.0 months) versus those who did not have chemotherapy (2.0 months). CONCLUSION: This retrospective cohort study showed that de novo LM was infrequent in EOC patients overall and when present predicted poor prognosis. The findings can be potentially useful in formulating for follow-up strategies, screening tools, and personalized interventions.
Assuntos
Neoplasias Pulmonares , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Estudos de Coortes , Feminino , Humanos , Incidência , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologia , Estadiamento de Neoplasias , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/terapia , Prognóstico , Estudos Retrospectivos , Fatores de RiscoRESUMO
Th17-mediated mucosal inflammation is related to increased Prevotella bacterial abundance. The actual involvement of Prevotella in the development and accumulation of intestinal Th17 cells at a steady state, however, remains undefined. Herein, we investigated the role of Prevotella in inducing intestinal Th17 cells in mice. Mice were treated with a combination of broad-spectrum antibiotics (including ampicillin, neomycin sulfate, vancomycin hydrochloride, and metronidazole) in their drinking water for 4 weeks and then gavaged with Prevotella for 4 weeks. After inoculation, 16S rDNA sequencing was used to verify the colonization of Prevotella in the colon of mice. The IL-17A as well as IL-17A-expressing T cells was localized and quantified by an immunofluorescence assay (IFA) of colon sections. Th17 cells in the mesenteric lymph nodes of mice were counted by flow cytometry. Systemic immune response to Prevotella colonization was evaluated based on the serum levels of IL-6, TNF-α, IL-1ß, IL-17A, IL-10, IL-4, IFN-γ, and IL-2. Th17-polarizing cytokines (IL-6, TNF-α, IL-1ß, and IL-2) induced by Prevotella were evaluated by stimulation of bone marrow-derived dendritic cells (BMDCs). Results revealed that after inoculation, Prevotella successfully colonized the intestine of mice and induced the production and accumulation of colonic Th17 cells in the colon. Moreover, Prevotella elevated some of the Th17-related cytokines in the serum of mice. And Th17-polarizing cytokines (IL-6 and IL-1ß) produced by BMDCs were mediated mainly through the interaction between Prevotella and Toll-like receptor 2 (TLR2). In conclusion, our data suggest that Prevotella induces the production of Th17 cells in the colon of mice, thus highlighting the potential role of Prevotella in training the intestinal immune system.