Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mater Horiz ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767150

RESUMO

Semiconductors with long-range interactions (LRI) due to resonant bonding exhibit delocalized electronic states and low lattice thermal conductivity, contributing to the efficiency of heat-to-electricity conversion. Here, we build a descriptor for high-throughput screening of LRI materials from the second-order interaction force constants. We identify 75 semiconducting candidates from the binary compounds in the MatHub-3d database that contain LRI. By analyzing the bonding properties of LRI atoms, we classify LRI in materials into two categories: type I and type II. In the structural unit of type I LRI, the atoms have strong bond connections, while a weak bond exists between the two groups in the structural unit of type II LRI. We have identified atypical type I LRI formed by Sb-Sb and Mg-Mg pairs in the emerging thermoelectric material Mg3Sb2, resulting in the softening of TA1 phonons and large anharmonicity. For type II LRI, the LRI of Ge-Ge and Se-Se pairs in R3m-GeSe can cross different layers. Moreover, we observe a combination of type II LRI and rattling effect in BaSe2 to restrict thermal transport. This work is of great significance for understanding the relationship between LRI and thermal transport properties, and for designing new LRI-induced low lattice thermal conductivity materials.

2.
Phys Chem Chem Phys ; 26(17): 13327-13334, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639877

RESUMO

Intrinsic half-metallic nanomaterials with 100% spin polarization are highly demanded for next-generation spintronic devices. Here, by using first-principles calculations, we have designed a class of new two-dimensional (2D) p-type half-metals, MSi2N4 (M = Al, Ga, In and Tl), which show high mechanical, thermal and dynamic stabilities. MSi2N4 not only have ultrawide electronic bandgaps for spin-up channels in the range of 4.05 to 6.82 eV but also have large half-metallic gaps in the range of 0.75 to 1.47 eV, which are large enough to prevent the spin-flip transition. The calculated magnetic moment is 1 µB per cell, resulting from polarized N1-px/py orbitals. Moreover, MSi2N4 possess robust long-range ferromagnetic orderings with Curie temperatures in the range of 35-140 K, originating from the interplay of N1-M-N1 superexchange interactions. Furthermore, spin dependent electronic transport calculations reveal 100% spin polarization. Our results highlight new promising 2D ferromagnetic half-metals toward future spintronic applications.

3.
Phys Chem Chem Phys ; 26(5): 4403-4411, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38240016

RESUMO

Nonlinear optical (NLO) crystals based on oxides typically have wide bandgaps and large laser damage thresholds (LDTs), which are important for generating high-power and continuous terahertz radiation. Recently, a new family of NLO materials α-A2BB'O6 including Li2TiTeO6 (LTTO) with a strong second harmonic generation (SHG) efficiency of 26 × KH2PO4 (KDP) and a large LDT of 550 MW cm-2 were reported. Herein, we systematically study the electronic structures and NLO properties of α-A2BB'O6 (A = Li, Na, K; B = Ti, Zr, Hf; B' = Se, Te) to explore the relationship between the structure and SHG coefficient. First, 15 members of the A2BB'O6 family are demonstrated to be highly stable and NLO materials, excluding K2TiTeO6, K2TiSeO6 and K2ZrSeO6. Then, the electronic band structure, dipole moment and distortion of BO6/B'O6 octahedrons, SHG coefficient and terahertz absorption spectrum are calculated comprehensively with the element variation of A-site, B-site and B'-site. Finally, the magnitude of the SHG coefficient is found to be directly proportional to the value of total dipole moment and distortion, and inversely proportional to the bandgap value. Most importantly, among the A2BB'O6 materials, K2HfSeO6 shows the smallest direct bandgap of 2.99 eV, the largest SHG coefficient d33 of about 5 × LTTO and low terahertz absorbance from 0.1 to 9 THz. Our results provide new NLO crystals that may have potential application in terahertz radiation sources and other nonlinear electronics.

4.
J Phys Chem Lett ; 14(50): 11465-11473, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38085873

RESUMO

Chalcogenide perovskites provide a promising avenue for nontoxic, stable thermoelectric materials. Here, the thermal transport and thermoelectric properties of BaZrS3 as a typical orthorhombic perovskite are investigated. An extremely low lattice thermal conductivity κL of 1.84 W/mK at 300 K is revealed for BaZrS3, due to the softening effect of Ba atoms on the lattice and the strong anharmonicity caused by the twisted structure. We demonstrate that coherence contributions to κL, arising from wave-like phonon tunneling, lead to an 18% thermal transport contribution at 300 K. The increasing temperature softens the phonons, thus reducing the group velocity of materials and increasing the scattering phase space. However, it simultaneously reduces the anharmonicity, which is dominant in BaZrS3 and ultimately improves the particle-like thermal transport. In addition, via replacement of the S atom with Se- and Ti-alloying strategy, the ZT value of BaZrS3 is significantly increased from 0.58 to 0.91 at 500 K, making it an important candidate for thermoelectric applications.

5.
Phys Chem Chem Phys ; 25(48): 32875-32882, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38051151

RESUMO

Although the efficient separation of electron-hole (e-h) pairs is one of the most sought-after electronic characteristics of materials, due to thermally induced atomic motion and other factors, they do not remain separated during the carrier transport process, potentially leading to rapid carrier recombination. Here, we utilized real-time time-dependent density functional theory in combination with nonadiabatic molecular dynamics (NAMD) to explore the separated dynamic transport path within Ruddlesden-Popper oxysulfide perovskite Y2Ti2O5S2 caused by the dielectric layer and phonon frequency difference. The underlying origin of the efficient overall water splitting in Y2Ti2O5S2 is systematically explored. We report the existence of the bi-directional e-h separate-path transport, in which, the electrons transport in the Ti2O5 layer and the holes diffuse in the rock-salt layer. This is in contrast to the conventional e-h separated distribution with a crowded transport channel, as observed in SrTiO3 and hybrid perovskites. Such a unique feature finally results in a long carrier lifetime of 321 ns, larger than that in the SrTiO3 perovskite (160 ns) with only one carrier transport channel. This work provides insights into the carrier transport in lead-free perovskites and yields a novel design strategy for next-generation functionalized optoelectronic devices.

6.
J Phys Chem Lett ; 14(40): 9075-9081, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788153

RESUMO

The search for lead-free perovskite materials has triggered intensive interest. Here, we study the electronic structures and optical properties of cation-deficient Ruddlesden-Popper oxysulfide perovskites Ln2Ti2O5S2 (Ln = Sc, Y, or La), with a tunable band gap of 1.45-2.1 eV and a small exciton binding energy of ∼0.1 eV, among which Y2Ti2O5S2 has been synthesized experimentally. Sc2Ti2O5S2 possesses the largest light absorbance in the visible region. We further rationalize the light absorption via the transition dipole moment and suggest potential applications of Sc2Ti2O5S2 in solar cells and Y2Ti2O5S2 and La2Ti2O5S2 in water splitting. In addition, this family exhibits small effective masses within the x-y plane and large ones along the z direction. Most importantly, electron gas-like carrier behaviors are observed within the Ti-O bond region, offering a diffusion channel for electron transport. These findings greatly advance our understanding of lead-free perovskites and offer a novel material platform for future optoelectronic devices.

7.
Nat Commun ; 14(1): 5356, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660140

RESUMO

Electrochemical chlorine evolution reaction is of central importance in the chlor-alkali industry, but the chlorine evolution anode is largely limited by water oxidation side reaction and corrosion-induced performance decay in strong acids. Here we present an amorphous CoOxCly catalyst that has been deposited in situ in an acidic saline electrolyte containing Co2+ and Cl- ions to adapt to the given electrochemical condition and exhibits ~100% chlorine evolution selectivity with an overpotential of ~0.1 V at 10 mA cm-2 and high stability over 500 h. In situ spectroscopic studies and theoretical calculations reveal that the electrochemical introduction of Cl- prevents the Co sites from charging to a higher oxidation state thus suppressing the O-O bond formation for oxygen evolution. Consequently, the chlorine evolution selectivity has been enhanced on the Cl-constrained Co-O* sites via the Volmer-Heyrovsky pathway. This study provides fundamental insights into how the reactant Cl- itself can work as a promoter toward enhancing chlorine evolution in acidic brine.

8.
J Colloid Interface Sci ; 652(Pt A): 627-635, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586949

RESUMO

Lithium (Li)-rich ternary alloy, comprising a multi-alloy phase as the built-in three-dimensional (3D) framework and a Li metal phase as a reversible Li reservoir, is a promising high-energy-density anode for rechargeable Li metal batteries. The introduction of metal/metalloid components to the alloy can effectively regulate Li deposition and maintain the dimensional integrity of the Li anode. Herein, the lithium-copper-zinc (Li-Cu-Zn) ternary alloy, as a new type of alloy anode, is synthesized via a facile thermal melting method. The fully delithiated 3D scaffold comprised two Cu-Zn alloy phases named CuZn and CuZn5. These alloy phases exhibit higher lithiophilicity and structural stability than Li-Zn and Li-Cu alloys. Moreover, the CuZn phase is electrochemically inert, ensuring the geometric stability of the anode, while the CuZn5 phase can readily undergo alloying reaction with Li to form the LiZn phase, thereby facilitating uniform Li nucleation and deposition. The hybridized multiphase alloy structure and specific energy storage mechanism of the Cu-Zn based alloy scaffold in the ternary alloy anode facilitate dendrite-free Li deposition and prolonged cycle lifetime. The Li metal full battery based on lithium iron phosphate (LiFePO4) cathode exhibits high cycling stability with high-capacity retention of 95.4% after 1000 cycles at 1C.

9.
Phys Chem Chem Phys ; 25(34): 22920-22926, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37591826

RESUMO

Na3PS4 crystals with high ionic conductivity are promising solid-state electrolytes. Here, a novel phase of Na3PS4 (ß'-NPS) crystallizing in a cubic lattice with a space group of P4̄3m was systematically investigated using first-principles calculations. First of all, ß'-NPS is determined to be thermodynamically, dynamically and mechanically stable. The phase transition from tetragonal Na3PS4(α-NPS) to a cubic ß'-NPS system occurs at approximately 480 K, suggesting high feasibility of experimental access. Moreover, the ß'-NPS is an insulator with a large band gap of 4.05 eV and a low migration energy barrier of 0.10 eV for an interstitial Na ion. Significantly, a novel Na ion diffusion mechanism, that is, interstitial diffusion, is proposed, in contrast to traditional vacancy diffusion or kick-off diffusion as observed in most solid electrolytes. This work proposes ß'-NPS as a promising superionic conductor for sodium ion batteries and provides theoretical guidance towards designing future ideal solid-state electrolytes.

10.
Nanoscale Horiz ; 8(7): 912-920, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37183596

RESUMO

The thermal transport properties of buckled phosphorene (ß-P) and antimonene (ß-Sb) are investigated using first-principles methods. The large acoustic-optical phonon gaps of 3.8 THz and 2.2 THz enable the four-phonon interaction to play an important role in phonon scattering for both ß-P and ß-Sb. Considering the electron-phonon coupling, the lattice thermal conductivity can further undergo 84% decrease to 4.9 W mK-1 for p-type ß-P at n = 5 × 1013 cm-2. By quantitatively describing the scattering probability of electrons in different paths combined with electron-phonon coupling matrix element analysis, it is found that multi-valley features of electronic band structure and strong electron-phonon coupling strength make electrons have strong intervalley scattering behavior in ß-P. The former plays an important role in the energy conservation condition of the scattering process, and the latter determines the selection rule. Our work elucidates the contribution of higher-order phonon interactions as well as electron-phonon coupling effects to lattice thermal conductivity, and provides a new idea for finding materials with low lattice thermal conductivity induced by intervalley scattering.

11.
Nanomaterials (Basel) ; 13(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177119

RESUMO

Constructing two-dimensional (2D) van der Waals (vdW) heterostructures is an effective strategy for tuning and improving the characters of 2D-material-based devices. Four trilayer vdW heterostructures, BP/BP/MoS2, BlueP/BlueP/MoS2, BP/graphene/MoS2 and BlueP/graphene/MoS2, were designed and simulated using the first-principles calculation. Structural stabilities were confirmed for all these heterostructures, indicating their feasibility in fabrication. BP/BP/MoS2 and BlueP/BlueP/MoS2 lowered the bandgaps further, making them suitable for a greater range of applications, with respect to the bilayers BP/MoS2 and BlueP/MoS2, respectively. Their absorption coefficients were remarkably improved in a wide spectrum, suggesting the better performance of photodetectors working in a wide spectrum from mid-wave (short-wave) infrared to violet. In contrast, the bandgaps in BP/graphene/MoS2 and BlueP/graphene/MoS2 were mostly enlarged, with a specific opening of the graphene bandgap in BP/graphene/MoS2, 0.051 eV, which is much larger than usual and beneficial for optoelectronic applications. Accompanying these bandgap increases, BP/graphene/MoS2 and BlueP/graphene/MoS2 exhibit absorption enhancement in the whole infrared, visible to deep ultraviolet or solar blind ultraviolet ranges, implying that these asymmetrically graphene-sandwiched heterostructures are more suitable as graphene-based 2D optoelectronic devices. The proposed 2D trilayer vdW heterostructures are prospective new optoelectronic devices, possessing higher performance than currently available devices.

12.
J Phys Chem Lett ; 14(14): 3384-3390, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36995147

RESUMO

The lack of efficient catalysts and research on the mechanism for the methanol oxidation reaction (MOR) impedes the development of direct methanol fuel cells. In this work, based on density functional theory calculations, we systematically investigated the activity trends of electrochemical MOR on a single transition-metal atom embedded in N-coordinated graphene (M@N4C). By calculating the free energy diagrams of MOR on M@N4C, Co@N4C was screened out to be the most effective MOR catalyst with a low limiting potential of 0.41 V due to the unique charge transfers and electronic structures. Importantly, one- and two-dimensional volcano relationships in MOR on M@N4C catalysts are established based on the d-band center and the Gibbs free energy of ΔG*CH3OH and ΔG*CO, respectively. In one word, this work provides theoretical guides toward the improved activity of MOR on M@N4C and hints for the design of active and efficient MOR electrocatalysts.

13.
Micromachines (Basel) ; 14(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838105

RESUMO

Bulk III-nitride materials MN (M = Al, Ga and In) and their alloys have been widely used in high-power electronic and optoelectronic devices, but stable two-dimensional (2D) III-nitride materials, except h-BN, have not been realized yet. A new kind of 2D III-nitride material M2Si2N4 (M = Al, Ga and In) is predicted by choosing Si as the appropriate passivation element. The stability, electronic and optical properties of 2D M2Si2N4 materials are studied systematically based on first-principles calculations. The results show that Al2Si2N4 and Ga2Si2N4 are found to be indirect bandgap semiconductors, while In2Si2N4 is a direct bandgap semiconductor. Moreover, Al2Si2N4 and In2Si2N4 have good absorption ability in the visible light region, while Ga2Si2N4 is an ultraviolet-light-absorbing material. Furthermore, the carrier lifetimes of Ga2Si2N4 and In2Si2N4 are as large as 157.89 and 103.99 ns, respectively. All these desirable properties of M2Si2N4 materials make them attractive for applications in electronics and photoelectronics.

14.
Langmuir ; 39(10): 3792-3799, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36853231

RESUMO

Low-dimension perovskite materials have attracted wide attention due to their excellent optical properties and stability. Herein, Sb3+-doped Cs2ZrCl6 crystals are synthesized by a coprecipitation method in which Sb3+ ions partially replace Zr4+ ions. The Cs2ZrCl6:xSb3+ powder shows blue and orange-red emissions under a 254 and 365 nm light, respectively, due to the [ZrCl6]2- octahedron and [SbCl6]3- octahedron. The photoluminescence quantum yield (PLQY) of Cs2ZrCl6:xSb3+ (x = 0.1) crystals is up to 52.5%. According to experimental and computational results, the emission mechanism of the Cs2ZrCl6:xSb3+ crystals is proposed. On the one hand, a wide blue emission with a large Stokes shift is caused by the self-trapping excitons of [ZrCl6]2- octahedra under a 260 nm excitation. On the other hand, the luminescence mechanism of [SbCl6]3- octahedron is divided into two parts: 1P1 → 1S0 (490 nm) and 3P1 → 1S0 (625 nm). The broad-band emission, high PLQY, and excellent stability endow the Cs2ZrCl6:xSb3+ powders with the potential for the fabrication of white light-emitting diodes (WLEDs). A WLED device is fabricated using a commercial 310 nm NUV chip, which shows a high color rendering index of 89.7 and a correlated color temperature of 5333 K. In addition, the synthesized Cs2ZrCl6:xSb3+ crystals can be also successfully used for information encryption. Our work will provide a deep understanding of the photophysical properties of Sb3+-doped perovskites and facilitate the development of Cs2ZrCl6:xSb3+ crystals in encrypting multilevel optical codes and WLEDs.

15.
Adv Sci (Weinh) ; 10(9): e2205934, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683244

RESUMO

Using a density functional theory-based thermal transport model, which includes the effects of temperature (T)-dependent potential energy surface, lattice thermal expansion, force constant renormalization, and higher-order quartic phonon scattering processes, it is found that the recently synthesized nitride perovskite LaWN3 displays strong anharmonic lattice dynamics manifested into a low lattice thermal conductivity (κL ) and a non-standard κL ∝T-0.491 dependence. At high T, the departure from the standard κL ∝T-1 law originates in the dual particle-wave behavior of the heat carrying phonons, which includes vibrations tied to the N atoms. While the room temperature κL =2.98 W mK-1 arises mainly from the conventional particle-like propagation of phonons, there is also a significant atypical wave-like phonon tunneling effect, leading to a 20% glass-like heat transport contribution. The phonon broadening effect lowers the particle-like contribution but increases the glass-like one. Upon T increase, the glass-like contribution increases and dominates above T = 850 K. Overall, the low κL with a weak T-dependence points to a new utility for LaWN3 in energy technology applications, and motivates synthesis and exploration of nitride perovskites.

16.
Nat Commun ; 14(1): 340, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670129

RESUMO

Renewable electricity-powered CO evolution from CO2 emissions is a promising first step in the sustainable production of commodity chemicals, but performing electrochemical CO2 reduction economically at scale is challenging since only noble metals, for example, gold and silver, have shown high performance for CO2-to-CO. Cu is a potential catalyst to achieve CO2 reduction to CO at the industrial scale, but the C-C coupling process on Cu significantly depletes CO* intermediates, thus limiting the CO evolution rate and producing many hydrocarbon and oxygenate mixtures. Herein, we tune the CO selectivity of Cu by alloying a second metal Sb into Cu, and report an antimony-copper single-atom alloy catalyst (Sb1Cu) of isolated Sb-Cu interfaces that catalyzes the efficient conversion of CO2-to-CO with a Faradaic efficiency over 95%. The partial current density reaches 452 mA cm-2 with approximately 91% CO Faradaic efficiency, and negligible C2+ products are observed. In situ spectroscopic measurements and theoretical simulations reason that the atomic Sb-Cu interface in Cu promotes CO2 adsorption/activation and weakens the binding strength of CO*, which ends up with enhanced CO selectivity and production rates.

17.
Adv Sci (Weinh) ; 10(4): e2206558, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470655

RESUMO

Regulating redox kinetics is able to spur the great-leap-forward development of room-temperature sodium-sulfur (RT Na-S) batteries, especially on propelling their Na-ion storage capability. Here, an innovative metal oxide kinetics accelerator, orthorhombic Nb2 O5 Na-ion conductor, is proposed to functionalize porous carbon nanoreactors (CNR) for S cathodes. The Nb2 O5 is shown to chemically immobilize sodium polysulfides via strong affinity. Theoretical and experimental evidence reveals that the Nb2 O5 can bidirectionally regulate redox behaviors of S cathodes, which accelerates reduction conversions from polysulfides to sulfides as well as promotes oxidation reactions from sulfides to S. In situ and ex situ characterization techniques further verify its electrochemical lasting endurance in catalyzing S conversions. The well-designed S cathode demonstrates a high specific capacity of 1377 mA h g-1 at 0.1 A g-1 , outstanding rate capability of 405 mA h g-1 at 2 A g-1 , and stable cyclability with a capacity retention of 617 mA h g-1 over 600 cycles at 0.5 A g-1 . An ultralow capacity decay rate of 0.0193% per cycle is successfully realized, superior to those of current state-of-the-art RT Na-S batteries. This design also suits emerging Na-Se batteries, which contribute to outstanding electrochemical performance as well.

18.
Nat Commun ; 13(1): 7769, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522326

RESUMO

The trade-off between light absorption and carrier transport in semiconductor thin film photoelectrodes is a major limiting factor of their solar-to-hydrogen efficiency for photoelectrochemical water splitting. Herein, we develop a heterogeneous doping strategy that combines surface doping with bulk gradient doping to decouple light absorption and carrier transport in a thin film photoelectrode. Taking La and Mg doped Ta3N5 thin film photoanode as an example, enhanced light absorption is achieved by surface La doping through alleviating anisotropic optical absorption, while efficient carrier transport in the bulk is maintained by the gradient band structure induced by gradient Mg doping. Moreover, the homojunction formed between the La-doped layer and the gradient Mg-doped layer further promotes charge separation. As a result, the heterogeneously doped photoanode yields a half-cell solar-to-hydrogen conversion efficiency of 4.07%, which establishes Ta3N5 as a leading performer among visible-light-responsive photoanodes. The heterogeneous doping strategy could be extended to other semiconductor thin film light absorbers to break performance trade-offs by decoupling light absorption and carrier transport.

19.
Nat Commun ; 13(1): 6731, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347885

RESUMO

The surface and interface chemistry are of significance on controlling the properties of two-dimensional transition metal carbides and nitrides (MXenes). Numerous efforts have been devoted to the regulation of Ti3C2Tx MXene, however, tuning interlayer spacing and surface halogen termination of other MXenes (besides Ti3C2Tx) is rarely reported while demanded. Here we propose a Lewis-basic halides treatment, which is capable of simultaneously engineering the interlayer spacing and surface termination of various MXenes. Benefited from the abundant desolvated halogen anions and cations in molten state Lewis-basic halides, the -F termination was substituted by nucleophilic reaction and the interlayer spacing was enlarged. Ti3C2Tx MXene treated by this method showed a high specific capacity of 229 mAh g-1 for Li+ storage, which is almost 2 times higher than pristine one. Considering the universality, our method provides an approach to regulating the properties of MXenes, which may expand their potential applications in energy storage, optoelectronics and beyond.

20.
Nat Commun ; 13(1): 5551, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138027

RESUMO

Although Ti3C2Tx MXene is a promising material for many applications such as catalysis, energy storage, electromagnetic interference shielding due to its metallic conductivity and high processability, it's poor resistance to oxidation at high temperatures makes its application under harsh environments challenging. Here, we report an air-stable Ti3C2Tx based composite with extracted bentonite (EB) nanosheets. In this case, oxygen molecules are shown to be preferentially adsorbed on EB. The saturated adsorption of oxygen on EB further inhibits more oxygen molecules to be adsorbed on the surface of Ti3C2Tx due to the weakened p-d orbital hybridization between adsorbed O2 and Ti3C2Tx, which is induced by the Ti3C2Tx/EB interface coupling. As a result, the composite is capable of tolerating high annealing temperatures (above 400 °C for several hours) both in air or humid environment, indicating highly improved antioxidation properties in harsh condition. The above finding is shown to be independent on the termination ratio of Ti3C2Tx obtained through different synthesis routes. Utilized as terahertz shielding materials, the composite retains its shielding ability after high-temperature treatment even up to 600 °C, while pristine Ti3C2Tx is completely oxidized with no terahertz shielding ability. Joule heating and thermal cycling performance are also demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA