Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Oncogene ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654108

RESUMO

Vascular endothelial cells (VECs) are key players in the formation of neovessels and tumor metastasis, the ultimate cause of the majority of cancer-related human death. However, the crosstalk between VECs and metastasis remain greatly elusive. Based on our finding that tumor-associated VECs present significant decrease of Nrdp1 protein which is closely correlated with higher metastatic probability, herein we show that the conditional medium from hypoxia-incubated cancer cells induces extensive Nrdp1 downregulation in human and mouse VECs by vascular endothelial growth factor (VEGF), which activates CHIP, followed by Nrdp1 degradation in ubiquitin-proteasome-dependent way. More importantly, lung metastases of cancer cells significantly increase in conditional VECs Nrdp1 knockout mice. Mechanically, Nrdp1 promotes degradation of Fam20C, a secretory kinase involved in phosphorylating numerous secreted proteins. Reciprocally, deficiency of Nrdp1 in VECs (ecNrdp1) results in increased secretion of Fam20C, which induces degradation of extracellular matrix and disrupts integrity of vascular basement membrane, thus driving tumor metastatic dissemination. In addition, specific overexpression of ecNrdp1 by Nrdp1-carrying adeno-associated virus or chemical Nrdp1 activator ABPN efficiently mitigates tumor metastasis in mice. Collectively, we explore a new mechanism for VEGF to enhance metastasis and role of Nrdp1 in maintaining the integrity of vascular endothelium, suggesting that ecNrdp1-mediated signaling pathways might become potential target for anti-metastatic therapies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-35316183

RESUMO

This work presents a prototype system based on a multichannel receiving (RX) integrated circuit (IC) for contrast-enhanced ultrasound (CEUS) imaging. The RX IC is implemented in a 40-nm low-voltage CMOS technology and is designed to interface to a capacitive micromachined ultrasonic transducer array. To enable a direct connection of the RX electronics to the transducer, an analog multiplexer with on-chip protection circuitry is developed. Stress tests confirm the reliability of this arrangement when combined with a high-voltage pulser. The RX IC is equipped with a highly programmable bandpass filter to capture harmonic signals from ultrasound contrast agents (UCAs) while suppressing fundamental components. In order to examine the impact of analog front-end (AFE) bandpass filtering, in vitro acoustic experiments are performed with UCAs. A spatial resolution analysis suggests that the AFE bandpass filtering combined with a pulse inversion (PI) technique can improve the lateral resolution by 38% or 9% compared to the original full-bandwidth approach or a stand-alone PI approach, respectively, while the impact on axial resolution is negligible. A phantom study shows that compared to digital bandpass filtering, the AFE bandpass filtering enables better use of the dynamic range of the RX electronics, resulting in better generalized contrast-to-noise ratio from 0.44/0.53 to 0.57/0.68 without or with PI.


Assuntos
Transdutores , Desenho de Equipamento , Imagens de Fantasmas , Reprodutibilidade dos Testes , Ultrassonografia/métodos
3.
Ultrasound Med Biol ; 48(1): 124-142, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34654580

RESUMO

Materials with well-characterized acoustic properties are of great interest for the development of tissue-mimicking phantoms with designed (micro)vasculature networks. These represent a useful means for controlled in-vitro experiments to validate perfusion imaging methods such as Doppler and contrast-enhanced ultrasound (CEUS) imaging. In this work, acoustic properties of seven tissue-mimicking phantom materials at different concentrations of their compounds and five phantom case materials are characterized and compared at room temperature. The goal of this research is to determine the most suitable phantom and case material for ultrasound perfusion imaging experiments. The measurements show a wide range in speed of sound varying from 1057 to 1616 m/s, acoustic impedance varying from 1.09 to 1.71 × 106 kg/m2s, and attenuation coefficients varying from 0.1 to 22.18 dB/cm at frequencies varying from 1 MHz to 6 MHz for different phantom materials. The nonlinearity parameter B/A varies from 6.1 to 12.3 for most phantom materials. This work also reports the speed of sound, acoustic impedance and attenuation coefficient for case materials. According to our results, polyacrylamide (PAA) and polymethylpentene (TPX) are the optimal materials for phantoms and their cases, respectively. To demonstrate the performance of the optimal materials, we performed power Doppler ultrasound imaging of a perfusable phantom, and CEUS imaging of that phantom and a perfusion system. The obtained results can assist researchers in the selection of the most suited materials for in-vitro studies with ultrasound imaging.


Assuntos
Acústica , Imagem de Perfusão , Perfusão , Imagens de Fantasmas , Ultrassonografia
4.
IEEE Trans Biomed Circuits Syst ; 15(6): 1430-1440, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910638

RESUMO

This paper presents a front-end integrated circuit for ultrasound (US) harmonic imaging, interfacing to a one-dimensional capacitive micromachined ultrasonic transducer (CMUT). It contains a complete ultrasound receiving chain, from analog front-end (AFE) to gigabit/s data link. A two-stage self-biased inverter-based transimpedance amplifier (TIA) is proposed in this work to improve tradeoffs between power, noise, and linearity at the first stage. To improve harmonic imaging performance, the design is further equipped with a 4[Formula: see text]-order highly programmable bandpass filter, which has a tunable bandwidth from 2 MHz to 15 MHz. An 8 b 80 MS/s SAR ADC digitizes the signal, which is further encoded and serialized into an LVDS data link, enabling a reduction in the number of output cables for future systems with multiple ADCs. The design is realized in a 40 nm CMOS technology. Electrical measurements show it consumes 2.9 mW for the AFE and 2.1 mW for the ADC and digital blocks. Its overall dynamic range varies from 61 dB to 69 dB, depending on the reception bandwidth. The imaging capability of this design is further demonstrated in a US transmission and reception imaging system. The acoustic measurements prove successful ultrasound harmonic acquisition, where the on-chip bandpass filter can improve the lateral resolution by more than 30%.


Assuntos
Amplificadores Eletrônicos , Transdutores , Desenho de Equipamento , Ultrassonografia/métodos
5.
Circulation ; 142(1): 49-64, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32200651

RESUMO

BACKGROUND: Branched-chain amino acids (BCAAs), essential nutrients including leucine, isoleucine, and valine, serve as a resource for energy production and the regulator of important nutrient and metabolic signals. Recent studies have suggested that dysfunction of BCAA catabolism is associated with the risk of cardiovascular disease. Platelets play an important role in cardiovascular disease, but the functions of BCAA catabolism in platelets remain unknown. METHODS: The activity of human platelets from healthy subjects before and after ingestion of BCAAs was measured. Protein phosphatase 2Cm specifically dephosphorylates branched-chain α-keto acid dehydrogenase and thereby activates BCAA catabolism. Protein phosphatase 2Cm-deficient mice were used to elucidate the impacts of BCAA catabolism on platelet activation and thrombus formation. RESULTS: We found that ingestion of BCAAs significantly promoted human platelet activity (n=5; P<0.001) and arterial thrombosis formation in mice (n=9; P<0.05). We also found that the valine catabolite α-ketoisovaleric acid and the ultimate oxidation product propionyl-coenzyme A showed the strongest promotion effects on platelet activation, suggesting that the valine/α-ketoisovaleric acid catabolic pathway plays a major role in BCAA-facilitated platelet activation. Protein phosphatase 2Cm deficiency significantly suppresses the activity of platelets in response to agonists (n=5; P<0.05). Our results also suggested that BCAA metabolic pathways may be involved in the integrin αIIbß3-mediated bidirectional signaling pathway that regulates platelet activation. Mass spectrometry identification and immunoblotting revealed that BCAAs enhanced propionylation of tropomodulin-3 at K255 in platelets or Chinese hamster ovary cells expressing integrin αIIbß3. The tropomodulin-3 K255A mutation abolished propionylation and attenuated the promotion effects of BCAAs on integrin-mediated cell spreading, suggesting that K255 propionylation of tropomodulin-3 is an important mechanism underlying integrin αIIbß3-mediated BCAA-facilitated platelet activation and thrombosis formation. In addition, the increased levels of BCAAs and the expression of positive regulators of BCAA catabolism in platelets from patients with type 2 diabetes mellitus are significantly correlated with platelet hyperreactivity. Lowering dietary BCAA intake significantly reduced platelet activity in ob/ob mice (n=4; P<0.05). CONCLUSIONS: BCAA catabolism is an important regulator of platelet activation and is associated with arterial thrombosis risk. Targeting the BCAA catabolism pathway or lowering dietary BCAA intake may serve as a novel therapeutic strategy for metabolic syndrome-associated thrombophilia.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Plaquetas/metabolismo , Metabolismo dos Lipídeos , Trombose/etiologia , Trombose/metabolismo , Tropomodulina/metabolismo , Animais , Biomarcadores , Testes de Coagulação Sanguínea , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Ativação Plaquetária , Trombose/sangue , Trombose/diagnóstico
6.
Front Physiol ; 10: 1140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551816

RESUMO

Recent studies show branched-chain amino acid (BCAA) catabolic pathway is defective in obese animals and humans, contributing to the pathogenesis of insulin resistance and diabetes. However, in the context of obesity, various processes including the dysfunctional lipid metabolism can affect insulin sensitivity and glycemic regulation. It remains unclear how BCAA catabolic defect may exert direct impacts on glucose metabolism without the disturbance of obesity. The current study characterized the glucose metabolism in lean mice in which the genetic deletion of PP2Cm leads to moderate BCAA catabolic defect. Interestingly, compared to the wildtype control, lean PP2Cm deficient mice showed enhanced insulin sensitivity and glucose tolerance, lower body weight, and the preference for carbohydrate over lipids utilization. Metabolomics profiling of plasma and tissues revealed significantly different metabolic patterns in the PP2Cm deficient mice, featured by the marked alterations in glucose metabolic processes, including gluconeogenesis/glycolysis, glycogen metabolism, and tricarboxylic acid cycle. The metabolic changes of glucose were predominantly observed in liver but not skeletal muscle or white adipose tissue. The elevated branched-chain keto acids (BCKAs) resulted from the BCAA catabolic defect may play a critical role in regulating the expression of key regulators of glucose metabolic processes and the activity of respiratory Complex II/succinate dehydrogenase in TCA cycle. Together, these results show BCAA catabolic defect significantly alters glucose metabolism in lean mice with some impacts different or even opposite from those in obese mice, highlighting the critical role of BCAA catabolism in glycemic regulation and the complex interplay between macronutrients in lean and obese animals.

7.
Diabetes ; 68(9): 1730-1746, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31167878

RESUMO

Recent studies implicate a strong association between elevated plasma branched-chain amino acids (BCAAs) and insulin resistance (IR). However, a causal relationship and whether interrupted BCAA homeostasis can serve as a therapeutic target for diabetes remain to be established experimentally. In this study, unbiased integrative pathway analyses identified a unique genetic link between obesity-associated IR and BCAA catabolic gene expression at the pathway level in human and mouse populations. In genetically obese (ob/ob) mice, rate-limiting branched-chain α-keto acid (BCKA) dehydrogenase deficiency (i.e., BCAA and BCKA accumulation), a metabolic feature, accompanied the systemic suppression of BCAA catabolic genes. Restoring BCAA catabolic flux with a pharmacological inhibitor of BCKA dehydrogenase kinase (BCKDK) ( a suppressor of BCKA dehydrogenase) reduced the abundance of BCAA and BCKA and markedly attenuated IR in ob/ob mice. Similar outcomes were achieved by reducing protein (and thus BCAA) intake, whereas increasing BCAA intake did the opposite; this corroborates the pathogenic roles of BCAAs and BCKAs in IR in ob/ob mice. Like BCAAs, BCKAs also suppressed insulin signaling via activation of mammalian target of rapamycin complex 1. Finally, the small-molecule BCKDK inhibitor significantly attenuated IR in high-fat diet-induced obese mice. Collectively, these data demonstrate a pivotal causal role of a BCAA catabolic defect and elevated abundance of BCAAs and BCKAs in obesity-associated IR and provide proof-of-concept evidence for the therapeutic validity of manipulating BCAA metabolism for treating diabetes.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Obesidade/metabolismo , Animais , Dieta Hiperlipídica , Expressão Gênica , Estudo de Associação Genômica Ampla , Teste de Tolerância a Glucose , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metaboloma , Camundongos , Obesidade/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia
8.
Cell Rep ; 23(5): 1461-1475, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719258

RESUMO

In addition to acting as building blocks for biosynthesis, amino acids might serve as signaling regulators in various physiological and pathological processes. However, it remains unknown whether amino acid levels affect the activities of hematopoietic stem cells (HSCs). By using a genetically encoded fluorescent sensor of the intracellular levels of branched-chain amino acids (BCAAs), we could monitor the dynamics of BCAA metabolism in HSCs. A mitochondrial-targeted 2C-type Ser/Thr protein phosphatase (PPM1K) promotes the catabolism of BCAAs to maintain MEIS1 and p21 levels by decreasing the ubiquitination-mediated degradation controlled by the E3 ubiquitin ligase CDC20. PPM1K deficiency led to a notable decrease in MEIS1/p21 signaling to reduce the glycolysis and quiescence of HSCs, followed by a severe impairment in repopulation activities. Moreover, the deletion of Ppm1k dramatically extended survival in a murine leukemia model. These findings will enhance the current understanding of nutrient signaling in metabolism and function of stem cells.


Assuntos
Proteínas Cdc20/metabolismo , Transformação Celular Neoplásica/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Leucemia/metabolismo , Proteína Meis1/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína Fosfatase 2C/metabolismo , Ubiquitinação , Animais , Proteínas Cdc20/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células-Tronco Hematopoéticas/patologia , Leucemia/genética , Leucemia/patologia , Camundongos , Camundongos Knockout , Proteína Meis1/genética , Proteínas de Neoplasias/genética , Proteína Fosfatase 2C/genética , Transdução de Sinais/genética
9.
Front Physiol ; 8: 853, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118722

RESUMO

Recent studies have linked branched-chain amino acid (BCAA) with numerous metabolic diseases. However, the molecular basis of BCAA's roles in metabolic regulation remains to be established. KLF15 (Krüppel-like factor 15) is a transcription factor and master regulator of glycemic, lipid, and amino acids metabolism. In the present study, we found high concentrations of BCAA suppressed KLF15 expression while BCAA starvation induced KLF15 expression, suggesting KLF15 expression is negatively controlled by BCAA.Interestingly, BCAA starvation induced PI3K-AKT signaling. KLF15 induction by BCAA starvation was blocked by PI3K and AKT inhibitors, indicating the activation of PI3K-AKT signaling pathway mediated the KLF15 induction. BCAA regulated KLF15 expression at transcriptional level but not post-transcriptional level. However, BCAA starvation failed to increase the KLF15-promoter-driven luciferase expression, suggesting KLF15 promoter activity was not directly controlled by BCAA. Finally, fasting reduced BCAA abundance in mice and KLF15 expression was dramatically induced in muscle and white adipose tissue, but not in liver. Together, these data demonstrated BCAA negatively regulated KLF15 expression, suggesting a novel molecular mechanism underlying BCAA's multiple functions in metabolic regulation.

10.
J Mol Cell Cardiol ; 101: 90-98, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27832938

RESUMO

Branched chain α-keto acids (BCKAs) are endogenous metabolites of branched-chain amino acids (BCAAs). BCAA and BCKA are significantly elevated in pathologically stressed heart and contribute to chronic pathological remodeling and dysfunction. However, their direct impact on acute cardiac injury is unknown. Here, we demonstrated that elevated BCKAs significantly attenuated ischemia-reperfusion (I/R) injury and preserved post I/R function in isolated mouse hearts. BCKAs protected cardiomyocytes from oxidative stress-induced cell death in vitro. Mechanistically, BCKA protected oxidative stress induced cell death by inhibiting necrosis without affecting apoptosis or autophagy. Furthermore, BCKAs, but not BCAAs, protected mitochondria and energy production from oxidative injury. Finally, administration of BCKAs during reperfusion was sufficient to significantly attenuate cardiac I/R injury. These findings uncover an unexpected role of BCAA metabolites in cardioprotection against acute ischemia/reperfusion injury, and demonstrate the potential use of BCKA treatment to preserve ischemic tissue during reperfusion.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Cetoácidos/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Estresse Oxidativo , Animais , Morte Celular , Linhagem Celular , Respiração Celular , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Necrose
11.
Circulation ; 133(21): 2038-49, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27059949

RESUMO

BACKGROUND: Although metabolic reprogramming is critical in the pathogenesis of heart failure, studies to date have focused principally on fatty acid and glucose metabolism. Contribution of amino acid metabolic regulation in the disease remains understudied. METHODS AND RESULTS: Transcriptomic and metabolomic analyses were performed in mouse failing heart induced by pressure overload. Suppression of branched-chain amino acid (BCAA) catabolic gene expression along with concomitant tissue accumulation of branched-chain α-keto acids was identified as a significant signature of metabolic reprogramming in mouse failing hearts and validated to be shared in human cardiomyopathy hearts. Molecular and genetic evidence identified the transcription factor Krüppel-like factor 15 as a key upstream regulator of the BCAA catabolic regulation in the heart. Studies using a genetic mouse model revealed that BCAA catabolic defect promoted heart failure associated with induced oxidative stress and metabolic disturbance in response to mechanical overload. Mechanistically, elevated branched-chain α-keto acids directly suppressed respiration and induced superoxide production in isolated mitochondria. Finally, pharmacological enhancement of branched-chain α-keto acid dehydrogenase activity significantly blunted cardiac dysfunction after pressure overload. CONCLUSIONS: BCAA catabolic defect is a metabolic hallmark of failing heart resulting from Krüppel-like factor 15-mediated transcriptional reprogramming. BCAA catabolic defect imposes a previously unappreciated significant contribution to heart failure.


Assuntos
Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Animais , Insuficiência Cardíaca/patologia , Humanos , Masculino , Metabolismo/fisiologia , Metabolômica , Camundongos , Camundongos Knockout , Transcriptoma
12.
Acta Pharmacol Sin ; 36(12): 1480-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26592513

RESUMO

AIM: The mitochondrial targeted 2C-type serine/threonine protein phosphatase (PP2Cm) is encoded by the gene PPM1K and is highly conserved among vertebrates. PP2Cm plays a critical role in branched-chain amino acid catabolism and regulates cell survival. Its expression is dynamically regulated by the nutrient environment and pathological stresses. However, little is known about the molecular mechanism underlying the regulation of PPM1K gene expression. In this study, we aimed to reveal how PPM1K expression is affected by miRNA-mediated post-transcriptional regulation. METHODS: Computational analysis based on conserved miRNA binding motifs was applied to predict the candidate miRNAs that potentially affect PPM1K expression. Dual-luciferase reporter assay was performed to verify the miRNAs' binding sites in the PPM1K gene and their influence on PPM1K 3'UTR activity. We further over-expressed the mimics of these miRNAs in human and mouse cells to examine whether miRNAs affected the mRNA level of PPM1K. RESULTS: Computational analysis identified numerous miRNAs potentially targeting PPM1K. Luciferase reporter assays demonstrated that the 3'UTR of PPM1K gene contained the recognition sites of miR-204 and miR-211. Overexpression of these miRNAs in human and mouse cells diminished the 3'UTR activity and the endogenous mRNA level of PPM1K. However, the miR-22 binding site was found only in human and not mouse PPM1K 3'UTR. Accordingly, PPM1K 3'UTR activity was suppressed by miR-22 overexpression in human but not mouse cells. CONCLUSION: These data suggest that different miRNAs contribute to the regulation of PP2Cm expression in a species-specific manner. miR-204 and miR-211 are efficient in both mouse and human cells, while miR-22 regulates PP2Cm expression only in human cells.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Fosfoproteínas Fosfatases/genética , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Humanos , Camundongos , Proteína Fosfatase 2C , RNA Mensageiro/genética
13.
J Biol Chem ; 287(28): 23397-406, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22589535

RESUMO

Branched-chain amino acid (BCAA) homeostasis is maintained through highly regulated catabolic activities where the rate-limiting step is catalyzed by branched-chain α-keto dehydrogenase (BCKD). Our previous study has identified a mitochondria-targeted protein phosphatase, PP2Cm, as the BCKD phosphatase and thus serves as a key regulator for BCAA catabolism. In this report, we performed comprehensive molecular and biochemical studies of PP2Cm regulation using both in vivo and in vitro systems. We show that PP2Cm expression is highly enriched in brain, heart, liver, kidney, and diaphragm, but low in skeletal muscle. The PP2Cm expression is regulated at the transcriptional level in response to nutrient status. Furthermore, we have established that PP2Cm interacts with the BCKD E2 subunit and competes with the BCKD kinase in a substrate-dependent and mutually exclusive manner. These data suggest that BCAA homeostasis is at least in part contributed by nutrient-dependent PP2Cm expression and interaction with the BCKD complex. Finally, a number of human PP2Cm single nucleotide polymorphic changes as identified in the public data base can produce either inactive or constitutive active mutant phosphatases, suggesting that putative PP2Cm mutations may contribute to BCAA catabolic defects in human.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Fosfoproteínas Fosfatases/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Linhagem Celular Tumoral , Feminino , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Immunoblotting , Rim/embriologia , Rim/crescimento & desenvolvimento , Rim/metabolismo , Fígado/embriologia , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/embriologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Proteína Fosfatase 2C , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Cardiovasc Res ; 90(2): 220-3, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21502372

RESUMO

Metabolic remodelling is an integral part of the pathogenesis of heart failure. Although much progress has been made in our current understanding of the metabolic impairment involving carbohydrates and fatty acids in failing hearts, relatively little is known about the changes and potential impact of amino acid metabolism in the onset of heart diseases. Although most amino acid catabolic activities are found in the liver, branched-chain amino acid (BCAA) catabolism requires activity in several non-hepatic tissues, including cardiac muscle, diaphragm, brain and kidney. In this review, the new insights into the regulation of cardiac BCAA catabolism and functional impact on cardiac development and physiology will be discussed along with the potential contribution of impairment in BCAA catabolism to heart diseases. A particular focus will be the new information obtained from recently developed genetic models with BCAA catabolic defects and metabolomic studies in human and animal models. These studies have revealed the potential role of BCAA catabolism in cardiac pathophysiology and have helped to distinguish BCAA metabolic defects as an under-appreciated culprit in cardiac diseases rather than an epiphenomenon associated with metabolic remodelling in the failing heart.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Metabolismo Energético/fisiologia , Insuficiência Cardíaca/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Remodelação Ventricular/fisiologia , Animais , Humanos , Proteína Fosfatase 2C
15.
Blood ; 116(24): 5289-97, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20739655

RESUMO

All-trans retinoic acid (ATRA), a natural ligand for the retinoic acid receptors (RARs), induces clinical remission in most acute promyelocytic leukemia (APL) patients through the induction of differentiation and/or eradication of leukemia-initiating cells. Here, we identify a novel natural ent-kaurene diterpenoid derived from Isodon pharicus leaves, called pharicin B, that can rapidly stabilize RAR-α protein in various acute myeloid leukemic (AML) cell lines and primary leukemic cells from AML patients, even in the presence of ATRA, which is known to induce the loss of RAR-α protein. Pharicin B also enhances ATRA-dependent the transcriptional activity of RAR-α protein in the promyelocytic leukemia-RARα-positive APL cell line NB4 cells. We also showed that pharicin B presents a synergistic or additive differentiation-enhancing effect when used in combination with ATRA in several AML cell lines and, especially, some primary leukemic cells from APL patients. In addition, pharicin B can overcome retinoid resistance in 2 of 3 NB4-derived ATRA-resistant subclones. These findings provide a good example for chemical biology-based investigations of pathophysiological and therapeutic significances of RAR-α and PML-RAR-α proteins. The effectiveness of the ATRA/pharicin B combination warrants further investigation on their use as a therapeutic strategy for AML patients.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores do Ácido Retinoico/química , Tretinoína/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Diterpenos do Tipo Caurano/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Isodon/química , Leucemia Mieloide Aguda/patologia , Estabilidade Proteica/efeitos dos fármacos , Receptor alfa de Ácido Retinoico , Ativação Transcricional/efeitos dos fármacos , Tretinoína/uso terapêutico , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA