Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 337(Pt 1): 118818, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270884

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese Medicine (TCM) formula Wenjing Decoction (WJD) longstanding efficacy in enhancing blood circulation, resolving blood stasis, and mitigating dysmenorrhea symptoms. Despite its prevalent application, the specific mechanism underlying effect of WJD remains elusive. OBJECTIVE: The purpose of this study is to examine the material basis of Wenjing Decoction and explore the effect of WJD on rat models of dysmenorrhea with blood stasis syndrome and elucidate its mechanism. METHODS: In this study, we initially identified the chemical constituents of WJD using liquid chromatography-mass spectrometry (LC-MS). Subsequently, we employed network pharmacology to predict the mechanism of WJD in treating acute blood stasis dysmenorrhea. To further investigate the role of WJD, we established a rat model of acute blood stasis. We monitored changes in blood coagulation indexes, IL-6, TNF-α, NO, and COX-2 in rats before and after administration to confirm the successful establishment of the rat model and evaluate the therapeutic effect of WJD on dysmenorrhea and acute blood stasis. Finally, real-time fluorescence quantitative PCR (qPCR) and Western blot (WB) were utilized to investigate its mechanism. RESULTS: Through LC-MS analysis, 69 chemical substances were identified in WJD. Network pharmacology study revealed that the mechanism of WJD in treating BSS may be associated with the PI3K/AKT/NF-κB pathway. Following administration, the WJD group showed gradual recovery of physical signs and coagulation index to a healthy level. Additionally, the levels of IL-6, TNF-α, and COX-2 decreased in a dose-dependent manner, whereas NO levels increased. Results from QPCR and WB detection indicated increased expression levels of p-PI3K, p-AKT, Bcl-2, and eNOS, and decreased expression levels of Bax, NFκBp65, ICAM1, and VCAM1. CONCLUSION: The results show that WJD significantly improves the characterization, dysmenorrhea index, and coagulation-related factors in BSS rats. Through network pharmacological prediction, real-time fluorescence quantitative PCR, and Western blot analysis, it is postulated that the beneficial effects of WJD on dysmenorrhea may be linked to the PI3K/AKT/NF-κB signaling pathway. These findings offer a theoretical foundation for the advancement and utilization of WJD.

2.
Fitoterapia ; 172: 105718, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931719

RESUMO

The strategies or drugs for preventing and treating Hyperuricemia (HUA) are still lacking. As a traditional Chinese medicine (TCM) with a profound history, Ampelopsis grossedentata has been shown to play diverse biological roles. The purpose of the present study was to evaluate hypouricemic effect of A. grossedentata, and investigate its involved material basis and mechanism. A HUA mice model was established to evaluate the therapeutic effects of A. grossedentata. And then some extracts from A. grossedentata were prepared, isolated and analyzed. Furthermore, network pharmacology, based on the above results, was used to discover potential active ingredients and therapeutic targets, and they were further verified and explored by molecular docking and in vitro experiments. In vivo experiments showed that A. grossedentata exerted hypouricemic effect on mice of HUA. The core active ingredients (quercetin, myricetin and dihydromyricetin etc.) and core targets (PTGS2, XOD and ABCG2 etc.) for A. grossedentata to treat HUA were predicted by network pharmacology. And molecular docking showed that the spontaneous binding activities of above components and targets were marvelous. In vitro experiments further demonstrated that A. grossedentata exerted hypouricemic effect by decreasing the levels of UA, XOD, antioxidant factors, inflammatory factors, GLUT9 and URAT1 in HK-2 cells of HUA. Taken together, this study integrates multi-level interaction network with in vivo/vitro experiments to systematically reveal the material basis and mechanism of A. grossedentata in treating HUA, which provides a scientific basis for further study of A. grossedentata and HUA.


Assuntos
Ampelopsis , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Ampelopsis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Antioxidantes/farmacologia
3.
Front Pharmacol ; 14: 1249234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829300

RESUMO

The bark of Streblus indicus, a Dai medicine in China, has been listed in the Chinese Materia Medica as possessing hemostatic and analgesic properties. Ethnic medicine books record that its bark or leaves for the treatment of mumps and lymphoma. However, according to the literature survey, anti-inflammatory and analgesic studies available for leaves and branches of S. indicus have been seldom reported so far. The current study focuses on the metabolites of S. indicus bark and leaves responsible for anti-inflammatory and analgesic effects on the basis of bioactive-included acetic acid writhing, hot-plate, and xylene-induced ear swelling. The secretion of inflammatory mediators, TNF-α, IL-6, IL-1ß, IL-4, and IL-10, were evaluated for their anti-inflammatory by xylene-induced in mouse ear cells. Histological examination was used to assess the anti-inflammatory and analgesic effects of the branches and leaves of S. indicus, and Western blot analysis determined the mechanism of the methanolic extract of branches and leaves. Different metabolites of S. indicus significantly alleviated analgesic and anti-inflammatory effects, with no discernable differences among them. All metabolites decreased the levels of TNF-α, IL-1ß, and IL-6 and increased the levels of IL-4 and IL-10. The analgesic and anti-inflammatory mechanism of the methanolic extract was related to the NF-kB signaling pathway. These results not only would account for scientific knowledge for the traditional application of S. indicus, but also provide a credible theoretical foundation for the further development of anti-inflammatory and analgesic agents.

4.
Fitoterapia ; 164: 105362, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427595

RESUMO

Two new benzophenanthridine alkaloids enantiomers (±)-zanthonitidumines A (1) and B (2), along with seven known analogues (3-9), were isolated from Zanthoxylum nitidium. Their structures were elucidated on the basis of extensive spectroscopic techniques and ECD data. Compound 2 exhibited the most significant inhibition of IL-6 generation as well as TNF-α release which suggest that it may be a potential anti-inflammatory agent.


Assuntos
Alcaloides , Zanthoxylum , Benzofenantridinas/química , Benzofenantridinas/farmacologia , Zanthoxylum/química , Estrutura Molecular , Alcaloides/farmacologia , Alcaloides/química , Anti-Inflamatórios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA