Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Small ; : e2401229, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733235

RESUMO

The great potential of K1/2Bi1/2TiO3 (KBT) for dielectric energy storage ceramics is impeded by its low dielectric breakdown strength, thereby limiting its utilization of high polarization. This study develops a novel composition, 0.83KBT-0.095Na1/2Bi1/2ZrO3-0.075 Bi0.85Nd0.15FeO3 (KNBNTF) ceramics, demonstrating outstanding energy storage performance under high electric fields up to 425 kV cm-1: a remarkable recoverable energy density of 7.03 J cm-3, and a high efficiency of 86.0%. The analysis reveals that the superior dielectric breakdown resistance arises from effective mitigation of space charge accumulation at the interface, influenced by differential dielectric and conductance behaviors between grains and grain boundaries. Electric impedance spectra confirm the significant suppression of space charge accumulation in KNBNTF, attributable to the co-introduction of Na1/2Bi1/2ZrO3 and Bi0.85Nd0.15FeO3. Phase-field simulations reveal the emergence of a trans-granular breakdown mode in KNBNTF resulting from the mitigated interfacial polarization, impeding breakdown propagation and increasing dielectric breakdown resistance. Furthermore, KNBNTF exhibits a complex local polarization and enhances the relaxor features, facilitating high field-induced polarization and establishing favorable conditions for exceptional energy storage performance. Therefore, the proposed strategy is a promising design pathway for tailoring dielectric ceramics in energy storage applications.

2.
J Adv Res ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740259

RESUMO

BACKGROUND: Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW: We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.

3.
Cell Death Dis ; 15(4): 299, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678018

RESUMO

Mitochondria are the centers of energy and material metabolism, and they also serve as the storage and dispatch hubs of metal ions. Damage to mitochondrial structure and function can cause abnormal levels and distribution of metal ions, leading to cell dysfunction and even death. For a long time, mitochondrial quality control pathways such as mitochondrial dynamics and mitophagy have been considered to inhibit metal-induced cell death. However, with the discovery of new metal-dependent cell death including ferroptosis and cuproptosis, increasing evidence shows that there is a complex relationship between mitochondrial quality control and metal-dependent cell death. This article reviews the latest research results and mechanisms of crosstalk between mitochondrial quality control and metal-dependent cell death in recent years, as well as their involvement in neurodegenerative diseases, tumors and other diseases, in order to provide new ideas for the research and treatment of related diseases.


Assuntos
Morte Celular , Metais , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Metais/metabolismo , Animais , Mitofagia , Ferroptose , Dinâmica Mitocondrial , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38501173

RESUMO

We have reported previously that during hypoxia exposure, the expression of mature miR-17~92 was first upregulated and then downregulated in pulmonary artery smooth muscle cells (PASMC) and in mouse lungs in vitro and in vivo. Here we investigated the mechanisms regulating this bi-phasic expression of miR-17~92 in PASMC in hypoxia. We measured the level of primary miR-17~92 in PASMC during hypoxia exposure and found that short-term hypoxia exposure (3%O2, 6 hours) induced the level of primary miR-17~92, while long-term hypoxia exposure (3%O2, 24 hours) decreased its level, suggesting a bi-phasic regulation of miR-17~92 expression at the transcriptional level. We found that short-term hypoxia-induced upregulation of miR-17~92 was HIF1α and E2F1 dependent. Two HIF1α binding sites on miR-17~92 promoter were identified. We also found that long-term hypoxia-induced suppression of miR-17~92 expression could be restored by silencing of p53. Mutation of the p53-binding sites in the miR-17~92 promoter increased miR-17~92 promoter activity in both normoxia and hypoxia. Our findings suggest that the bi-phasic transcriptional regulation of miR-17~92 during hypoxia is controlled by HIF1/E2F1 and p53 in PASMC: during short-term hypoxia exposure, stabilization of HIF1 and induction of E2F1 induces the transcription of miR-17~92; while during long-term hypoxia exposure, hyperphosphorylation of p53 suppresses the expression of miR-17~92.

5.
Heliyon ; 10(4): e26185, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38404864

RESUMO

Background: We aimed to establish and validate a prognostic nomogram model for improving the prediction of 30-day mortality of gastrointestinal bleeding (GIB) in critically ill patients with severe sepsis. Methods: In this retrospective study, the current retrospective cohort study extracted data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, then partitioned the cohort randomly into training and validation subsets. The cohort was partitioned into training and validation subsets randomly. Our primary endpoint was 30-day all-cause mortality. To reduce data dimensionality and identify predictive variables, the least absolute shrinkage and selection operator (LASSO) regression was employed. A prediction model was constructed by multivariate logistic regression. Model performance was evaluated using the concordance index (C-index), receiver operating characteristic (ROC) curve, and decision curve analysis (DCA). Results: The analysis included 1435 total patients, comprising 1005 in the training cohort and 430 in the validation cohort. We found that age, smoking status, glucose, (BUN), lactate, Sequential Organ Failure Assessment (SOFA) score, mechanical ventilation≥48h (MV), parenteral nutrition (PN), and chronic obstructive pulmonary disease (COPD) independently influenced mortality in sepsis patients with concomitant GIB. The C-indices were 0.746 (0.700-0.792) and 0.716 (0.663-0.769) in the training and validation sets, respectively. Based on the area under the curve (AUC) and DCA, the nomogram exhibited good discrimination for 30-day all-cause mortality in sepsis with GIB. Conclusions: For sepsis patients complicated with GIB, we created a unique nomogram model to predict the 30-day all-cause mortality. This model could be a significant therapeutic tool for clinicians in terms of personalized treatment and prognosis prediction.

6.
Cell Prolif ; : e13621, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38389491

RESUMO

Nuclear receptor coactive 4 (NCOA4), which functions as a selective cargo receptor, is a critical regulator of the particularly autophagic degradation of ferritin, a process known as ferritinophagy. Mechanistically, NCOA4-mediated ferritinophagy performs an increasingly vital role in the maintenance of intracellular iron homeostasis by promoting ferritin transport and iron release as needed. Ferritinophagy is not only involved in iron-dependent responses but also in the pathogenesis and progression of various human diseases, including metabolism-related, neurodegenerative, cardiovascular and infectious diseases. Therefore, ferritinophagy is of great importance in maintaining cell viability and function and represents a potential therapeutic target. Recent studies indicated that ferritinophagy regulates the signalling pathway associated with ferroptosis, a newly discovered type of cell death characterised by iron-dependent lipid peroxidation. Although accumulating evidence clearly demonstrates the importance of the interplay between dysfunction in iron metabolism and ferroptosis, a deeper understanding of the double-edged sword effect of ferritinophagy in ferroptosis has remained elusive. Details of the mechanisms underlying the ferritinophagy-ferroptosis axis in regulating relevant human diseases remain to be elucidated. In this review, we discuss the latest research findings regarding the mechanisms that regulate the biological function of NCOA4-mediated ferritinophagy and its contribution to the pathophysiology of ferroptosis. The important role of the ferritinophagy-ferroptosis axis in human diseases will be discussed in detail, highlighting the great potential of targeting ferritinophagy in the treatment of diseases.

7.
Angew Chem Int Ed Engl ; 62(18): e202302156, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36878864

RESUMO

Although multitargeted PtIV anticancer prodrugs have shown significant activities in reducing drug resistance, the types of bioactive ligands and drugs that can be conjugated to the Pt center remain limited to O-donors. Herein, we report the synthesis of PtIV complexes bearing axial pyridines via ligand exchange reactions. Unexpectedly, the axial pyridines are quickly released after reduction, indicating their potential to be utilized as axial leaving groups. We further expand our synthetic approach to obtaining two multitargeted PtIV prodrugs containing bioactive pyridinyl ligands: a PARP inhibitor and an EGFR tyrosine kinase inhibitor; these conjugates exhibit great potential for overcoming drug resistance, and the latter conjugate inhibits the growth of Pt-resistant tumor in vivo. This research adds to the array of synthetic methods for accessing PtIV prodrugs and significantly increases the types of bioactive axial ligands that can be conjugated to a PtIV center.


Assuntos
Antineoplásicos , Pró-Fármacos , Platina , Ligantes , Pró-Fármacos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
8.
Small ; 19(19): e2207464, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36748859

RESUMO

Eco-friendly transparent dielectric ceramics with superior energy storage properties are highly desirable in various transparent energy-storage electronic devices, ranging from advanced transparent pulse capacitors to electro-optical multifunctional devices. However, the collaborative improvement of energy storage properties and optical transparency in KNN-based ceramics still remains challenging. To address this issue, multiple synergistic strategies are proposed, such as refining the grain size, introducing polar nanoregions, and inducing a high-symmetry phase structure. Accordingly, outstanding energy storage density (Wtotal  ≈7.5 J cm-3 , Wrec  ≈5.3 J cm-3 ) and optical transmittance (≈76% at 1600 nm, ≈62% at 780 nm) are simultaneously realized in the 0.94(K0.5 Na0.5 )NbO3 -0.06Sr0.7 La0.2 ZrO3 ceramic, together with satisfactory charge-discharge performances (discharge energy density: ≈2.7 J cm-3 , power density: ≈243 MW cm-3 , discharge rate: ≈76 ns), surpassing previously reported KNN-based transparent ceramics. Piezoresponse force microscopy and transmission electron microscopy revealed that this excellent performance can be attributed to the nanoscale domain and submicron-scale grain size. The significant improvement in the optical transparency and energy storage properties of the materials resulted in the widening of the application prospects of the materials.

9.
Front Cell Infect Microbiol ; 12: 999569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211966

RESUMO

Background: Sepsis is considered an intractable dysfunction that results from the disordered host immune response to uncontrolled infection. Even though the precise mechanism of sepsis remains unclear, scientific advances have highlighted the key role of various programmed cell death processes in the pathophysiology of sepsis. The current study aims to explore the worldwide research trend on programmed cell death in the setting of sepsis and assesses the achievements of publications from various countries, institutions, journals, and authors globally. Material and methods: Associated publications during 2002-2022 with the topical subject of sepsis and programmed cell death were extracted from the Web of Science. VOSviewer was utilized to evaluate and map the published trend in the relevant fields. Results: All 2,037 relevant manuscripts with a total citation of 71,575 times were screened out by the end of 1 January 2022. China accounted for the largest number of publications (45.07%) and was accompanied by corporate citations (11,037) and H-index (48), which ranked second globally. The United States has been ranked first place with the highest citations (30,775) and H-index (88), despite a low publication number (29.95%), which was subsequent to China. The journal Shock accounted for the largest number of publications in this area. R. S. Hotchkiss, affiliated with Washington University, was considered to have published the most papers in the relevant fields (57) and achieved the highest citation frequencies (9,523). The primary keywords on the topic of programmed cell death in sepsis remarkably focused on "inflammation" "immunosuppression", and "oxidative stress", which were recognized as the core mechanisms of sepsis, eventually attributing to programmed cell death. The involved research on programmed cell death induced by immune dysregulation of sepsis was undoubtedly the hotspot in the pertinent areas. Conclusions: The United States has been academically outstanding in sepsis-related research. There appears to be an incompatible performance between publications and quantity with China. Frontier advances may be consulted in the journal Shock. The leading-edge research on the scope of programmed cell death in sepsis should preferably focus on immune dissonance-related studies in the future.


Assuntos
Bibliometria , Sepse , Apoptose , China/epidemiologia , Humanos , Terapia de Imunossupressão , Estados Unidos
10.
Mol Ther Nucleic Acids ; 29: 204-216, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35892089

RESUMO

MicroRNAs (miRNA, miR-) play important roles in disease development. In this study, we identified an anti-proliferative miRNA, miR-212-5p, that is induced in pulmonary artery smooth muscle cells (PASMCs) and lungs of pulmonary hypertension (PH) patients and rodents with experimental PH. We found that smooth muscle cell (SMC)-specific knockout of miR-212-5p exacerbated hypoxia-induced pulmonary vascular remodeling and PH in mice, suggesting that miR-212-5p may be upregulated in PASMCs to act as an endogenous inhibitor of PH, possibly by suppressing PASMC proliferation. Extracellular vesicles (EVs) have been shown recently to be promising drug delivery tools for disease treatment. We generated endothelium-derived EVs with an enriched miR-212-5p load, 212-eEVs, and found that they significantly attenuated hypoxia-induced PH in mice and Sugen/hypoxia-induced severe PH in rats, providing proof of concept that engineered endothelium-derived EVs can be used to deliver miRNA into lungs for treatment of severe PH.

11.
Pulm Circ ; 12(1): e12014, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35506070

RESUMO

In the lung, communication between pulmonary vascular endothelial cells (PVEC) and pulmonary artery smooth muscle cells (PASMC) is essential for the maintenance of vascular homeostasis. In pulmonary hypertension (PH), the derangement in their cell-cell communication plays a major role in the pathogenesis of pulmonary vascular remodeling. In this study, we focused on the role of PVEC-derived extracellular vesicles (EV), specifically their microRNA (miRNA, miR-) cargo, in the regulation of PASMC proliferation and vascular remodeling in PH. We found that the amount of pro-proliferative miR-210-3p was increased in PVEC-derived EV in hypoxia (H-EV), which contributes to the H-EV-induced proliferation of PASMC and the development of PH.

12.
Dalton Trans ; 51(3): 885-897, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34927657

RESUMO

Pt(IV) complexes bearing axial carbonate linkages have drawn much attention recently. A synthetic method behind this allows the hydroxyl group of bioactive ligands to be attached to the available hydroxyl group of Pt(IV) complexes, and the rapid release of free drugs is achieved after the reduction of carbonate-linked Pt(IV) complexes. Further understanding on the properties of Pt(IV) carbonates such as hydrolytic stability and reduction profiles, however, is hindered by limited research. Herein, six mono-carbonated Pt(IV) complexes in which the carbonate axial ligands possess various electron-withdrawing powers were synthesized, and the corresponding mono-carboxylated analogues were also prepared as references to highlight the different properties. The influence of the coordination environment towards the hydrolysis and reduction rate of Pt(IV) carbonates and carboxylates was explored. The mono-carbonated Pt(IV) complexes are both less stable and reduced faster than the corresponding mono-carboxylated ones. Moreover, the hydrolysis and reduction profiles are dependent not only on the electron-withdrawing ability of the carbonates but also on the nature of the opposite axial ligands. Besides, the exploration of the hydrolytic pathway for Pt(IV) carbonates suggests that the process proceeds by an attack of OH- on the carbonyl carbon, followed by elimination, which is different from that of Pt(IV) carboxylates. This study provides some information on the influence of axial carbonate ligands with different electron-withdrawing abilities on the properties of the Pt(IV) center, which may inspire new thoughts on the design of "multi-action" Pt(IV) prodrugs.


Assuntos
Carbonatos , Platina/química , Platina/farmacologia , Pró-Fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrólise
13.
BMC Cancer ; 21(1): 915, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384377

RESUMO

BACKGROUND: Intracranial hemangiopericytoma is a rare disease and surgery is the mainstay treatment. Although postoperative adjuvant radiotherapy is often used, there are no reports comparing different radiotherapy techniques. The purpose of this study is to analyze the impact of post-operative radiotherapy and different radiotherapy technique on the results in patients with intracranial hemangiopericytoma (HPC). METHODS: We retrospectively reviewed 66 intracranial HPC patients treated between 1999 and 2019 including 29 with surgery followed by radiotherapy (11 with intensity-modulated radiotherapy (IMRT) and 18 with stereotactic radiosurgery (SRS)) and 37 with surgery alone. Chi-square test was used to compare the clinical characteristic between the groups. The Kaplan-Meier method was used to analyze overall survival (OS) and recurrence-free survival (RFS). Multivariate Cox proportional hazards models were used to examine prognostic factors of survival. We also underwent a matched-pair analysis by using the propensity score method. RESULTS: The crude local control rates were 58.6% in the surgery plus post-operative radiotherapy group (PORT) and 67.6% in the surgery alone group (p = 0.453). In the subgroup analysis of the PORT patients, local controls were 72.7% in the IMRT group and 50% in the SRS group (p = 0.228). The median OS in the PORT and surgery groups were 122 months and 98 months, respectively (p = 0.169). The median RFS was 96 months in the PORT group and 72 months in the surgery alone group (p = 0.714). Regarding radiotherapy technique, the median OS and RFS of the SRS group were not significantly different from those in the IMRT group (p = 0.256, 0.960). The median RFS were 112 and 72 months for pathology grade II and III patients, respectively (p = 0.001). Propensity score matching did not change the observed results. CONCLUSION: In this retrospective analysis, PORT did not improve the local control rates nor the survivals. The local control rates after IMRT and SRS were similar even though the IMRT technique had a much higher biological dose compared with the SRS technique.


Assuntos
Neoplasias Encefálicas/radioterapia , Hemangiopericitoma/radioterapia , Cuidados Pós-Operatórios , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/mortalidade , Terapia Combinada , Feminino , Hemangiopericitoma/diagnóstico , Hemangiopericitoma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Modelos de Riscos Proporcionais , Radiocirurgia , Radioterapia de Intensidade Modulada , Recidiva , Estudos Retrospectivos , Resultado do Tratamento
14.
Chem Sci ; 12(19): 6536-6542, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34040729

RESUMO

Selective activation of prodrugs at diseased tissue through bioorthogonal catalysis represents an attractive strategy for precision cancer treatment. Achieving efficient prodrug photoactivation in cancer cells, however, remains challenging. Herein, we report two Pt(iv) complexes, designated as rhodaplatins {rhodaplatin 1, [Pt(CBDCA-O,O)(NH3)2(RhB)OH]; rhodaplatin 2, [Pt(DACH)ox(RhB)(OH)], where CBDCA is cyclobutane-1,1-dicarboxylate, RhB is rhodamine B, DACH is (1R,2R)-1,2-diaminocyclohexane, and ox is oxalate}, that bear an internal photoswitch to realize efficient accumulation, significant co-localization, and subsequent effective photoactivation in cancer cells. Compared with the conventional platform of external photocatalyst plus substrate, rhodaplatins presented up to 4.8 104-fold increased photoconversion efficiency in converting inert Pt(iv) prodrugs to active Pt(ii) species under physiological conditions, due to the increased proximity and covalent bond between the photoswitch and Pt(iv) substrate. As a result, rhodaplatins displayed increased photocytotoxicity compared with a mixture of RhB and conventional Pt(iv) compound in cancer cells including Pt-resistant ones. Intriguingly, rhodaplatin 2 efficiently accumulated in the mitochondria and induced apoptosis without causing genomic DNA damage to overcome drug resistance. This work presents a new approach to develop highly effective prodrugs containing intramolecular photoswitches for potential medical applications.

15.
Chem Commun (Camb) ; 57(40): 4922-4925, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870987

RESUMO

A new approach was applied to synthesize boron nanoplates based on layer exfoliation of etched MgB2 particles through a controlled decomposition and explosion of a widely used dipolar aprotic solvent: dimethyl sulfoxide (DMSO). These nanoplates are environmentally stable, surface-functionalized, and reveal excellent electrochemical performance as an anode material for lithium-ion batteries.

16.
Inorg Chem ; 59(16): 11676-11687, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799457

RESUMO

Platinum(IV) complexes containing carboxylate and carbamate ligands at the axial position have been reported previously. A better understanding of the similarity and difference between the two types of ligands will provide us with new insights and more choices to design novel Pt(IV) complexes. In this study, we systematically investigated and compared the properties of Pt(IV) complexes bearing the two types of ligands. Ten pairs of unsymmetric Pt(IV) complexes bearing axial carbamate or carboxylate ligands were synthesized and characterized. The stability of these Pt(IV) complexes in a PBS buffer with or without a reducing agent was investigated, and most of these complexes exhibited good stability. Besides, most Pt(IV) prodrugs with carbamate axial ligands were reduced faster than the corresponding ones with carboxylate ligands. Furthermore, the aqueous solubilities and lipophilicities of these Pt(IV) complexes were tested. All the carbamate complexes showed better aqueous solubility and decreased lipophilicity as compared to those of the corresponding carboxylate complexes, due to the increased polarity of carbamate ligands. Biological properties of these complexes were also evaluated. Many carbamate complexes showed cytotoxicity similar to that of the carboxylate complexes, which may derive from the lower cellular accumulation but faster reduction of the former. Our research highlights the differences between the Pt(IV) prodrugs containing carbamate and carboxylate axial ligands and may contribute to the future rational design of Pt-based anticancer prodrugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carbamatos/química , Ácidos Carboxílicos/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Estabilidade de Medicamentos , Ligantes , Oxirredução
17.
ACS Appl Mater Interfaces ; 12(20): 23370-23377, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32329610

RESUMO

Although ultrahigh theoretical capacity has long been predicted for boron-based lithium-ion battery anodes, experimentally, boron has exhibited only limited performance and its lithiation process remains elusive. The two-dimensional (2D) form of boron is believed to be an ideal model system to investigate the lithiation behavior of boron; however, unfortunately, most reported 2D boron structures are prone to oxidation under ambient conditions. In this contribution, through a simultaneous etching and in situ functionalization process, we synthesized for the first time methyl-functionalized boron nanosheets, which remain stable up to 250 °C. Combining experiments and theoretical calculations, we found that lithiation of boron is realized through the formation of alloys such as LiB3 and Li3B14, while alloys with higher Li content such as Li5B are thermodynamically less favored. In addition, detailed electrochemical analysis reveals that side reactions on the boron surface may also contribute to the unsatisfactory performance of boron-based electrodes. Our findings suggest that reducing the enthalpy of formation of high Li content alloys and the choice of a less nucleophilic electrolyte are key to developing high-performance anodes based on novel boron materials. Our demonstration of stable 2D boron structures also paves the way for their fundamental study and practical applications.

18.
Biomed Res Int ; 2020: 1279371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32337220

RESUMO

BACKGROUND: sCD30 and sCD26 are correlated with autoimmune diseases. However, little research has been done on the relationship between them and primary immune thrombocytopenia (ITP). METHODS: This study enrolled 47 patients diagnosed with ITP in the Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences (Tianjin, China), from January 2015 to August 2015. The peripheral blood of all subjects was collected. The mRNA expression of CD30 was quantified by RT-PCR, and concentrations of sCD30 and sCD26 were measured by ELISA. Patient characteristics, CD30 mRNA levels, and sCD30 and sCD26 concentrations were analyzed. RESULTS: The concentration of sCD30 was higher in active ITP patients (median, 35.82 ng/mL) than in remission ITP patients (median, 23.12 ng/mL; P = 0.021) and healthy controls (median, 25.11 ng/mL; P = 0.002). Plasma sCD26 levels decreased in remission ITP patients compared with that in healthy controls (median, 599.4 ng/mL vs. 964.23 ng/mL; P = 0.004). Ratios of sCD26/sCD30 in active ITP patients decreased compared with those in controls (P = 0.005). Increased sCD30 was positively correlated with hemorrhage (r = 0.493, P = 0.017) in ITP patients while little relationship was identified between sCD26 and ITP. CONCLUSION: Since sCD30 levels and sCD26/sCD30 ratios may contribute to the activity of the disease, they may be used to assess ITP disease activity.


Assuntos
Dipeptidil Peptidase 4/sangue , Antígeno Ki-1/sangue , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/epidemiologia , Adolescente , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Púrpura Trombocitopênica Idiopática/terapia , Adulto Jovem
19.
Inorg Chem ; 58(23): 16279-16291, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738050

RESUMO

Many clinical trials using combinations of platinum drugs and PARP-1 inhibitors (PARPi) have been carried out, with the hope that such combinations will lead to enhanced therapeutic outcomes against tumors. Herein, we obtained seven potential PARPi with structural diversity and then conjugated them with cisplatin-based platinum(IV) complexes. Both the synthesized PARPi ligands and PARPi-Pt conjugates [PARPi-Pt(IV)] show inhibitory effects against PARP-1's catalytic activity. The PARPi-Pt(IV) conjugates are cytotoxic in a panel of human cancer cell lines, and the leading ones display the ability to overcome cisplatin resistance. A mechanistic investigation reveals that the representative PARPi-Pt(IV) conjugates efficiently enter cells, bind to genomic DNA, disturb cell cycle distribution, and induce apoptotic cell death in both cisplatin-sensitive and -resistant cells. Our study provides a strategy to improve the cytotoxicity of platinum(IV)-based anticancer complexes and overcome cisplatin resistance by using a small-molecule anticancer complex that simultaneously damages DNA and inhibits PARP.


Assuntos
Antineoplásicos/farmacologia , Compostos Organoplatínicos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Inibidores de Poli(ADP-Ribose) Polimerases/síntese química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Relação Estrutura-Atividade
20.
Nat Commun ; 9(1): 3850, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242159

RESUMO

The molecular mechanisms underlying the metabolic shift toward increased glycolysis observed in pulmonary artery smooth muscle cells (PASMC) during the pathogenesis of pulmonary arterial hypertension (PAH) are not fully understood. Here we show that the glycolytic enzyme α-enolase (ENO1) regulates the metabolic reprogramming and malignant phenotype of PASMC. We show that ENO1 levels are elevated in patients with associated PAH and in animal models of hypoxic pulmonary hypertension (HPH). The silencing or inhibition of ENO1 decreases PASMC proliferation and de-differentiation, and induces PASMC apoptosis, whereas the overexpression of ENO1 promotes a synthetic, de- differentiated, and apoptotic-resistant phenotype via the AMPK-Akt pathway. The suppression of ENO1 prevents the hypoxia-induced metabolic shift from mitochondrial respiration to glycolysis in PASMC. Finally, we find that pharmacological inhibition of ENO1 reverses HPH in mice and rats, suggesting ENO1 as a regulator of pathogenic metabolic reprogramming in HPH.


Assuntos
Hipertensão Pulmonar/etiologia , Miócitos de Músculo Liso/enzimologia , Fosfopiruvato Hidratase/metabolismo , Adenilato Quinase/metabolismo , Animais , Apoptose , Diferenciação Celular , Respiração Celular , Modelos Animais de Doenças , Glicólise , Humanos , Hipertensão Pulmonar/enzimologia , Camundongos , Fenótipo , Fosfopiruvato Hidratase/antagonistas & inibidores , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/enzimologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA