Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Sci Rep ; 14(1): 14107, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898043

RESUMO

Disulfidptosis, a newly identified programmed cell death pathway in prostate cancer (PCa), is closely associated with intracellular disulfide stress and glycolysis. This study aims to elucidate the roles of disulfidptosis-related genes (DRGs) in the pathogenesis and progression of PCa, with the goal of improving diagnostic and therapeutic approaches. We analyzed PCa datasets and normal tissue transcriptome data from TCGA, GEO, and MSKCC. Using consensus clustering analysis and LASSO regression, we developed a risk scoring model, which was validated in an independent cohort. The model's predictive accuracy was confirmed through Kaplan-Meier curves, receiver operating characteristic (ROC) curves, and nomograms. Additionally, we explored the relationship between the risk score and immune cell infiltration, and examined the tumor microenvironment and somatic mutations across different risk groups. We also investigated responses to immunotherapy and drug sensitivity. Our analysis identified two disulfidosis subtypes with significant differences in survival, immune environments, and treatment responses. According to our risk score, the high-risk group exhibited poorer progression-free survival (PFS) and higher tumor mutational burden (TMB), associated with increased immune suppression. Functional enrichment analysis linked high-risk features to key cancer pathways, including the IL-17 signaling pathway. Moreover, drug sensitivity analysis revealed varied responses to chemotherapy, suggesting the potential for disulfidosis-based personalized treatment strategies. Notably, we identified PROK1 as a crucial prognostic marker in PCa, with its reduced expression correlating with disease progression. In summary, our study comprehensively assessed the clinical implications of DRGs in PCa progression and prognosis, offering vital insights for tailored precision medicine approaches.


Assuntos
Biomarcadores Tumorais , Imunoterapia , Neoplasias da Próstata , Microambiente Tumoral , Humanos , Masculino , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/imunologia , Biomarcadores Tumorais/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Nomogramas , Estimativa de Kaplan-Meier
2.
Cell Host Microbe ; 32(6): 950-963.e8, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38788722

RESUMO

Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.


Assuntos
Colite , Camundongos Knockout , Receptores Adrenérgicos alfa 2 , Células-Tronco , Tiramina , Animais , Tiramina/metabolismo , Tiramina/farmacologia , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Camundongos , Receptores Adrenérgicos alfa 2/metabolismo , Células-Tronco/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Tirosina Descarboxilase/metabolismo , Enterococcus faecalis/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ioimbina/farmacologia , Modelos Animais de Doenças , Enterococcus/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Proliferação de Células , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Sulfato de Dextrana
3.
Clin Transl Oncol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602643

RESUMO

PURPOSE: Machine learning (ML) models presented an excellent performance in the prognosis prediction. However, the black box characteristic of ML models limited the clinical applications. Here, we aimed to establish explainable and visualizable ML models to predict biochemical recurrence (BCR) of prostate cancer (PCa). MATERIALS AND METHODS: A total of 647 PCa patients were retrospectively evaluated. Clinical parameters were identified using LASSO regression. Then, cohort was split into training and validation datasets with a ratio of 0.75:0.25 and BCR-related features were included in Cox regression and five ML algorithm to construct BCR prediction models. The clinical utility of each model was evaluated by concordance index (C-index) values and decision curve analyses (DCA). Besides, Shapley Additive Explanation (SHAP) values were used to explain the features in the models. RESULTS: We identified 11 BCR-related features using LASSO regression, then establishing five ML-based models, including random survival forest (RSF), survival support vector machine (SSVM), survival Tree (sTree), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and a Cox regression model, C-index were 0.846 (95%CI 0.796-0.894), 0.774 (95%CI 0.712-0.834), 0.757 (95%CI 0.694-0.818), 0.820 (95%CI 0.765-0.869), 0.793 (95%CI 0.735-0.852), and 0.807 (95%CI 0.753-0.858), respectively. The DCA showed that RSF model had significant advantages over all models. In interpretability of ML models, the SHAP value demonstrated the tangible contribution of each feature in RSF model. CONCLUSIONS: Our score system provide reference for the identification for BCR, and the crafting of a framework for making therapeutic decisions for PCa on a personalized basis.

4.
Immunity ; 57(4): 752-771, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599169

RESUMO

Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.


Assuntos
Inflamação , Ácidos Nucleicos , Humanos , Imunidade Inata , Receptores Imunológicos , Alarminas
5.
Nat Rev Immunol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684933

RESUMO

Damage-associated molecular patterns (DAMPs) are endogenous molecules that are released from host cells as a result of cell death or damage. The release of DAMPs in tissues is associated with loss of tissue homeostasis. Sensing of DAMPs by innate immune receptors triggers inflammation, which can be beneficial in initiating the processes that restore tissue homeostasis but can also drive inflammatory diseases. In recent years, the sensing of intracellular DAMPs has received extensive attention in the field of sterile inflammation. However, emerging studies have shown that DAMPs that originate from neighbouring cells, and even from distal tissues or organs, also mediate sterile inflammatory responses. This multi-level sensing of DAMPs is crucial for intercellular, trans-tissue and trans-organ communication. Here, we summarize how DAMP-sensing receptors detect DAMPs from intracellular, intercellular or distal tissue and organ sources to mediate sterile inflammation. We also discuss the possibility of targeting DAMPs or their corresponding receptors to treat inflammatory diseases.

6.
Immunity ; 57(4): 876-889.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479384

RESUMO

Concentrations of the secondary bile acid, deoxycholic acid (DCA), are aberrantly elevated in colorectal cancer (CRC) patients, but the consequences remain poorly understood. Here, we screened a library of gut microbiota-derived metabolites and identified DCA as a negative regulator for CD8+ T cell effector function. Mechanistically, DCA suppressed CD8+ T cell responses by targeting plasma membrane Ca2+ ATPase (PMCA) to inhibit Ca2+-nuclear factor of activated T cells (NFAT)2 signaling. In CRC patients, CD8+ T cell effector function negatively correlated with both DCA concentration and expression of a bacterial DCA biosynthetic gene. Bacteria harboring DCA biosynthetic genes suppressed CD8+ T cells effector function and promoted tumor growth in mice. This effect was abolished by disrupting bile acid metabolism via bile acid chelation, genetic ablation of bacterial DCA biosynthetic pathway, or specific bacteriophage. Our study demonstrated causation between microbial DCA metabolism and anti-tumor CD8+ T cell response in CRC, suggesting potential directions for anti-tumor therapy.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Ácidos e Sais Biliares , Ácido Desoxicólico/farmacologia , Linfócitos T CD8-Positivos
7.
Int Immunopharmacol ; 131: 111915, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38522141

RESUMO

The aberrant activation of NLRP3 inflammasome contributes to pathogenesis of multiple inflammation-driven human diseases. However, the medications targeting NLRP3 inflammasome are not approved for clinic use to date. Here, we show that ascorbyl palmitate (AP), a lipophilic derivative of ascorbic acid (AA) and a safe food additive, is a potent inhibitor of NLRP3 inflammasome. Compared with AA, AP inhibited the activation of NLRP3 inflammasome with increased potency and specificity. Mechanistically, AP directly scavenged mitochondrial reactive oxygen species (mitoROS) by its antioxidant activity and blocked NLRP3-NEK7 interaction and NLRP3 inflammasome assembly. Moreover, AP showed more significant preventive effects than AA in LPS-induced systemic inflammation, dextran sulfate sodium (DSS)-induced colitis and experimental autoimmune encephalomyelitis (EAE). Thus, our results suggest that AP is a potential therapeutic combating NLRP3-driven diseases.


Assuntos
Ácido Ascórbico/análogos & derivados , Colite , Inflamassomos , Humanos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Colite/induzido quimicamente , Colite/tratamento farmacológico , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Sulfato de Dextrana
8.
Nat Cell Biol ; 25(12): 1729-1731, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973842
9.
Proc Natl Acad Sci U S A ; 120(39): e2308435120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733739

RESUMO

GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.


Assuntos
Inibição Psicológica , Neuralgia , Humanos , Microscopia Crioeletrônica , Ligação Competitiva
10.
Cell ; 186(14): 3033-3048.e20, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37327784

RESUMO

The intestinal epithelial cells (IECs) constitute the primary barrier between host cells and numerous foreign antigens; it is unclear how IECs induce the protective immunity against pathogens while maintaining the immune tolerance to food. Here, we found IECs accumulate a less recognized 13-kD N-terminal fragment of GSDMD that is cleaved by caspase-3/7 in response to dietary antigens. Unlike the 30-kD GSDMD cleavage fragment that executes pyroptosis, the IEC-accumulated GSDMD cleavage fragment translocates to the nucleus and induces the transcription of CIITA and MHCII molecules, which in turn induces the Tr1 cells in upper small intestine. Mice treated with a caspase-3/7 inhibitor, mice with GSDMD mutation resistant to caspase-3/7 cleavage, mice with MHCII deficiency in IECs, and mice with Tr1 deficiency all displayed a disrupted food tolerance phenotype. Our study supports that differential cleavage of GSDMD can be understood as a regulatory hub controlling immunity versus tolerance in the small intestine.


Assuntos
Gasderminas , Proteínas de Neoplasias , Camundongos , Animais , Caspase 3/metabolismo , Proteínas de Neoplasias/metabolismo , Piroptose , Intestino Delgado/metabolismo , Tolerância Imunológica
11.
Front Immunol ; 14: 1128700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359517

RESUMO

NLRP3 is an important innate immune sensor that responses to various signals and forms the inflammasome complex, leading to IL-1ß secretion and pyroptosis. Lysosomal damage has been implicated in NLRP3 inflammasome activation in response to crystals or particulates, but the mechanism remains unclear. We developed the small molecule library screening and found that apilimod, a lysosomal disruptor, is a selective and potent NLRP3 agonist. Apilimod promotes the NLRP3 inflammasome activation, IL-1ß secretion, and pyroptosis. Mechanismically, while the activation of NLRP3 by apilimod is independent of potassium efflux and directly binding, apilimod triggers mitochondrial damage and lysosomal dysfunction. Furthermore, we found that apilimod induces TRPML1-dependent calcium flux in lysosomes, leading to mitochondrial damage and the NLRP3 inflammasome activation. Thus, our results revealed the pro-inflammasome activity of apilimod and the mechanism of calcium-dependent lysosome-mediated NLRP3 inflammasome activation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Lisossomos/metabolismo
12.
Cell Res ; 33(5): 372-388, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055591

RESUMO

Inflammatory bowel diseases (IBD) are known to have complex, genetically influenced etiologies, involving dysfunctional interactions between the intestinal immune system and the microbiome. Here, we characterized how the RNA transcript from an IBD-associated long non-coding RNA locus ("CARINH-Colitis Associated IRF1 antisense Regulator of Intestinal Homeostasis") protects against IBD. We show that CARINH and its neighboring gene coding for the transcription factor IRF1 together form a feedforward loop in host myeloid cells. The loop activation is sustained by microbial factors, and functions to maintain the intestinal host-commensal homeostasis via the induction of the anti-inflammatory factor IL-18BP and anti-microbial factors called guanylate-binding proteins (GBPs). Extending these mechanistic insights back to humans, we demonstrate that the function of the CARINH/IRF1 loop is conserved between mice and humans. Genetically, the T allele of rs2188962, the most probable causal variant of IBD within the CARINH locus from the human genetics study, impairs the inducible expression of the CARINH/IRF1 loop and thus increases genetic predisposition to IBD. Our study thus illustrates how an IBD-associated lncRNA maintains intestinal homeostasis and protects the host against colitis.


Assuntos
Colite , Doenças Inflamatórias Intestinais , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Intestinos , Colite/metabolismo , Mucosa Intestinal/metabolismo
13.
Cell Rep ; 41(9): 111741, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36450257

RESUMO

Metabolic rewiring is essential for Th17 cells' functional identity to sense and interpret environmental cues. However, the environmental metabolic checkpoints with specific regulation of Th17 cells, manifesting potential therapeutic opportunities to autoimmune diseases, remain largely unknown. Here, by screening more than one hundred compounds derived from intestinal microbes or diet, we found that vitamin B5 (VB5) restrains Th17 cell differentiation as well as related autoimmune diseases such as experimental autoimmune encephalomyelitis and colitis. Mechanistically, VB5 is catabolized into coenzyme A (CoA) in a pantothenate kinase (PANK)-dependent manner, and in turn, CoA binds to pyruvate kinase isoform 2 (PKM2) to impede its phosphorylation and nuclear translocation, thus inhibiting glycolysis and STAT3 phosphorylation. In humans, reduced serum VB5 levels are found in both IBD and MS patients. Collectively, our study demonstrates a role of VB5 in Th17 cell metabolic reprograming, thus providing a potential therapeutic intervention for Th17 cell-associated autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Piruvato Quinase , Humanos , Animais , Ácido Pantotênico , Células Th17 , Isoformas de Proteínas , Coenzima A
14.
Nat Commun ; 13(1): 7389, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450731

RESUMO

Macrophages are involved in tissue homeostasis and are critical for innate immune responses, yet distinct macrophage populations in different tissues exhibit diverse gene expression patterns and biological processes. While tissue-specific macrophage epigenomic and transcriptomic profiles have been reported, proteomes of different macrophage populations remain poorly characterized. Here we use mass spectrometry and bulk RNA sequencing to assess the proteomic and transcriptomic patterns, respectively, of 10 primary macrophage populations from seven mouse tissues, bone marrow-derived macrophages and the cell line RAW264.7. The results show distinct proteomic landscape and protein copy numbers between tissue-resident and recruited macrophages. Construction of a hierarchical regulatory network finds cell-type-specific transcription factors of macrophages serving as hubs for denoting tissue and functional identity of individual macrophage subsets. Finally, Il18 is validated to be essential in distinguishing molecular signatures and cellular function features between tissue-resident and recruited macrophages in the lung and liver. In summary, these deposited datasets and our open proteome server ( http://macrophage.mouseprotein.cn ) integrating all information will provide a valuable resource for future functional and mechanistic studies of mouse macrophages.


Assuntos
Proteômica , Transcriptoma , Camundongos , Animais , Macrófagos , Proteoma , Contagem de Leucócitos
15.
Science ; 377(6610): 1085-1091, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926007

RESUMO

The hypothalamic-pituitary (HP) unit can produce various hormones to regulate immune responses, and some of its downstream hormones or effectors are elevated in cancer patients. We show that the HP unit can promote myelopoiesis and immunosuppression to accelerate tumor growth. Subcutaneous implantation of tumors induced hypothalamus activation and pituitary α-melanocyte-stimulating hormone (α-MSH) production in mice. α-MSH acted on bone marrow progenitors to promote myelopoiesis, myeloid cell accumulation, immunosuppression, and tumor growth through its melanocortin receptor MC5R. MC5R peptide antagonist boosted antitumor immunity and anti-programmed cell death protein 1 (anti-PD-1) immunotherapy. Serum α-MSH concentration was elevated and correlated with circulating myeloid-derived suppressor cells in cancer patients. Our results reveal a neuroendocrine pathway that suppresses tumor immunity and suggest MC5R as a potential target for cancer immunotherapy.


Assuntos
Sistema Hipotálamo-Hipofisário , Tolerância Imunológica , Mielopoese , Neoplasias , alfa-MSH , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Mielopoese/imunologia , Neoplasias/imunologia , Receptores de Melanocortina/metabolismo , alfa-MSH/metabolismo
16.
Front Pharmacol ; 13: 822833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250572

RESUMO

NLRP3 inflammasome is involved in the pathology of multiple human inflammatory diseases but there are still no clinically available medications targeting the NLRP3 inflammasome. We have previously identified RRx-001 as a highly selective and potent NLRP3 inhibitor, however, it contains high-energy nitro functional groups and may cause potential processing problems and generates highly toxic oxidants. Here, we show that compound 149-01, an RRx-001 analogue without high-energy nitro functional groups, is a potent, specific and covalent NLRP3 inhibitor. Mechanistically, 149-01 binds directly to cysteine 409 of NLRP3 to block the NEK7-NLRP3 interaction, thereby preventing NLRP3 inflammasome complex assembly and activation. Furthermore, treatment with 149-01 effectively alleviate the severity of several inflammatory diseases in mice, including lipopolysaccharide (LPS)-induced systemic inflammation, monosodium urate crystals (MSU)-induced peritonitis and experimental autoimmune encephalomyelitis (EAE). Thus, our results indicate that 149-01 is a potential lead for developing therapeutic agent for NLRP3-related inflammatory diseases.

17.
Front Cell Dev Biol ; 10: 822236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252186

RESUMO

The activation of NLRP3 inflammasome leads to cell pyroptosis and inflammatory cytokines secretion and gets involved in the development of many diseases, such as neuroinflammation and metabolic syndrome, but the drugs targeting NLRP3 are not clinically available for now. Through screening the small molecule library, we found that manoalide is a highly selective small molecule inhibitor of NLRP3. Mechanismly, manoalide inhibited the NLRP3 inflammasome activation by acting downstream of potassium efflux, chloride efflux and mitochondrial dysfunction. Moreover, manoalide blocked the interaction between NEK7 and NLRP3 by covalently binding to Lys 377 of the NLRP3 protein. Treatment of manoalide relieved the pathogenesis of experimental autoimmune encephalomyelitis (EAE) in mice. Thus, our results identify manoalide as a selective and covalent NLRP3 inhibitor and suggest it has the potential for the treatment of NLRP3-associated diseases.

18.
Trends Mol Med ; 28(5): 421-434, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341684

RESUMO

Although combined antiretroviral therapy (cART) is effective in inhibiting human immunodeficiency virus type 1 (HIV-1) replication, it does not eradicate the virus because small amounts of latent HIV-1 provirus persist in quiescent memory CD4+ T cells. Therefore, strategies for eradicating latent HIV-1 are urgently needed. Recently, several studies have reported that the inflammatory response and lymphocyte death induced by HIV-1 depend on inflammasomes and pyroptosis, suggesting that inflammasomes and pyroptosis have a vital role in HIV-1 infection and contribute to the eradication of latent HIV-1. In this review, we summarize current knowledge of the role of inflammasomes, including NLR family pyrin domain-containing protein 3 (NLRP3), caspase recruitment domain-containing protein 8 (CARD8), interferon-inducible protein 16 (IFI16), NLRP1, NLR family CARD domain-containing 4 (NLRC4), and absent in melanoma 2 (AIM2), in HIV-1 infection and discuss promising therapeutic strategies for HIV-1-associated diseases by targeting inflammasomes.


Assuntos
Infecções por HIV , HIV-1 , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , HIV-1/metabolismo , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Neoplasias/metabolismo , Latência Viral
20.
Nat Cancer ; 3(1): 75-89, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121990

RESUMO

α-Enolase 1 (ENO1) is a critical glycolytic enzyme whose aberrant expression drives the pathogenesis of various cancers. ENO1 has been indicated as having additional roles beyond its conventional metabolic activity, but the underlying mechanisms and biological consequences remain elusive. Here, we show that ENO1 suppresses iron regulatory protein 1 (IRP1) expression to regulate iron homeostasis and survival of hepatocellular carcinoma (HCC) cells. Mechanistically, we demonstrate that ENO1, as an RNA-binding protein, recruits CNOT6 to accelerate the messenger RNA decay of IRP1 in cancer cells, leading to inhibition of mitoferrin-1 (Mfrn1) expression and subsequent repression of mitochondrial iron-induced ferroptosis. Moreover, through in vitro and in vivo experiments and clinical sample analysis, we identified IRP1 and Mfrn1 as tumor suppressors by inducing ferroptosis in HCC cells. Taken together, this study establishes an important role for the ENO1-IRP1-Mfrn1 pathway in the pathogenesis of HCC and reveals a previously unknown connection between this pathway and ferroptosis, suggesting a potential innovative cancer therapy.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Proteína 1 Reguladora do Ferro/metabolismo , Neoplasias Hepáticas , Biomarcadores Tumorais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Ferroptose/genética , Humanos , Ferro/metabolismo , Proteína 1 Reguladora do Ferro/genética , Neoplasias Hepáticas/genética , Fosfopiruvato Hidratase/genética , RNA Mensageiro/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA