Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
J Hazard Mater ; 436: 129249, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739768

RESUMO

The development of highly efficient adsorptive material for the selective capture of Pd(II), and re-utilization of spent Pd(II)-loaded adsorbent as an efficient catalyst for organic synthesis are of great significance, but challenging. Particularly, the heterogeneous palladium-catalyzed Suzuki reaction in aqueous media is much more challenging than that of homogeneous. Herein, several novel Pd(II) ion-imprinted polymers (PIIPs) based on dendritic fibrous silica particles are constructed by surface ion imprinting technology (SIIT), using Schiff base and pyridine groups functionalized organosilicon as functional monomer. The PIIP-3 prepared by 3 g of functional monomer exhibits the best adsorption performance, and shows ultrafast (10 min) and selective capture of Pd(II) with high uptake capacity (382.5 mg/g). Moreover, the waste Pd(II) loaded PIIP-3 (PIIP-3-Pd) can serve as a catalyst towards the Suzuki reaction in water, affording 94.2 % yield of the desired product. Interestingly, the PIIP-3-Pd can be reused 12 times without an appreciable decrease in catalytic activity, which is probably due to the imprinted cavity and specific recognition site of PIIP-3 can match and recapture Pd active species in a complex catalytic environment. Thus, this work demonstrates huge potentials of SIIT to enhance the selectivity of adsorption process and increase the lifetime of catalysts.


Assuntos
Nanopartículas , Dióxido de Silício , Adsorção , Íons , Água
3.
J Hazard Mater ; 424(Pt A): 127273, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600391

RESUMO

Although polyacrylonitrile fiber (PANF) and metal-organic frameworks (MOFs) have been extensively investigated to remove U(VI) from water, their practical applications are seriously hindered by the relatively low stability of PANF in acidic solution and great difficulty of separating MOFs nanoparticles from solution, beside that, little attention is paid to the fabrication of MOFs and PANF composite materials (MPCMs) with excellent adsorption capacity for U(VI). Herein, we report the synthesis of novel MPCMs by decorating different concentrations of UiO-66-NH2 crystals onto polyamine and amidoxime groups functionalized PANF (PA-AO-PANF) through cross-linking method for U(VI) extraction. The characterization results reveal that the combination of PA-AO-PANF and UiO-66-NH2 crystals endows MPCMs with excellent separation ability, large surface area, good stability and plentiful surface functional groups, which contributes to good selectivity and enhanced adsorption performance. Consequently, the obtained UN-PA-AO-PANF-2 shows the maximum uptake capacity of 441.8 mg/g and equilibrium uptake time of 30 min towards U(VI). Besides, the U(VI) uptake ability and structure of UN-PA-AO-PANF-2 are well preserved after ten adsorption-desorption cycles. With these outstanding properties, the adsorbent has great potential for the capture of U(VI) from aqueous solutions. Importantly, this work provides a cost-effective and efficient way to construct extremely stable MPCMs hybrid fibers.

4.
J Hazard Mater ; 424(Pt A): 127203, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34600392

RESUMO

With the deepening of the concept of recycling economy and green chemistry, selective capture of Cu(II) from wastewater by biosorbent and reuse of the spent Cu(II)-loaded adsorbent are of great significance. Herein, we synthesized composite of rice husk (RH) with mesoporous silica MCM-41 (RH@MCM-41) modified by organosilane containing amino and schiff groups as functional monomer and cross-linking agent. The silica modified RH@MCM-41 was employed as supporter to fabricate copper ion-imprinted polymers as absorbents (named as RM-CIIPs) via surface ion imprinting technique. Adsorption isotherms, kinetics, selectivity and mechanism of RM-CIIPs to remove Cu(II) were investigated with respect to different adsorption condition. Furthermore, we explored the catalytic activity of spent Cu(II)-loaded adsorbent in Glaser coupling reaction. Batch adsorption studies revealed that RM-CIIP-3 prepared with functional monomer shows the best adsorption capacity (91.4 mg/g) for Cu(II), and adsorption equilibrium could be reached within 30 min. RM-CIIP-3 exhibited an excellent selectivity for capturing Cu(II) and reusability in six adsorption/desorption cycles. More importantly, the spent Cu(II)-loaded adsorbent could be used as bio-heterogeneous catalyst and afford the desired product (1,4-diphenylbutadiyne) in 99.1% yield. Our research indicates an eco-friendly systematic strategy to utilize the waste material as an adsorbent for removing heavy metals and catalyst for industry.


Assuntos
Oryza , Poluentes Químicos da Água , Adsorção , Cobre , Concentração de Íons de Hidrogênio , Cinética , Polímeros , Poluentes Químicos da Água/análise
5.
Water Sci Technol ; 82(10): 2159-2167, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33263592

RESUMO

Double functional groups modified bagasse (DFMBs), a series of new zwitterionic groups of carboxyl and amine modified adsorbents, were prepared through grafting tetraethylenepentamine (TEPA) onto the pyromellitic dianhydride (PMDA) modified bagasse using the DCC/DMAP method. DFMBs' ability to simultaneously remove basic magenta (BM, cationic dye) and Congo red (CR, anionic dye) from aqueous solution in single and binary dye systems was investigated. FTIR spectra and Zeta potential analysis results showed that PMDA and TEPA were successfully grafted onto the surface of bagasse, and the ratio of the amount of carboxyl groups and amine groups was controlled by the addition of a dosage of TEPA. Adsorption results showed that adsorption capacities of DFMBs for BM decreased while that for CR increased with the increase of the amount of TEPA in both single and binary dye systems, and BM or CR was absorbed on the modified biosorbents was mainly through electrostatic attraction and hydrogen bond. The adsorption for BM and CR could reach equilibrium within 300 min, both processes were fitted well by the pseudo-second-order kinetic model. The cationic and anionic dyes removal experiment in the binary system showed that DMFBs could be chosen as adsorbents to treat wastewater containing different ratios of cationic and anionic dyes.


Assuntos
Celulose , Corantes , Adsorção , Soluções
6.
Environ Res ; 188: 109817, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32580048

RESUMO

MIL-101(Fe)/sugarcane bagasse (SCB) with high adsorption capacity and selectivity toward phosphate was prepared through in-situ synthesis method. Effects of bagasse size on the morphology and performances of the composites were investigated, and adsorption behavior and mechanism of phosphate on the composite prepared at the optimum bagasse size were studied. Results showed that composite prepared with bagasse size of 200-300 mesh (MIL-101(Fe)/SCB3) showed much higher adsorption capacity than SCB, blank MIL-101(Fe) and the composites prepared with the other bagasse size, which was due to the more positively charged surface and the more exposed adsorption active sites including FeOHx and exchangeable Cl-. Co-ions experimental results illustrated that the as prepared MIL-101(Fe)/SCB3 showed high adsorption affinity toward phosphate, and the common cationic and anionic ions exhibited negligible effects on phosphate adsorption capacity and rate. The optimum pH range for phosphate adsorption on MIL-101(Fe)/SCB3 was from 3.0 to 10.0, and in this range Fe release was less than 0.03%. Adsorption mechanism showed that phosphate was adsorbed mainly through electrostatic force, ion-exchange, and inner-sphere surface complex. Simulated wastewater treatment experiment showed that MIL-101(Fe)/SCB3 could efficiently remove phosphate from aqueous solution.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Celulose , Estruturas Metalorgânicas , Fosfatos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA