Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Nat Commun ; 15(1): 2849, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565853

RESUMO

The evolution processes of complex systems carry key information in the systems' functional properties. Applying machine learning algorithms, we demonstrate that the historical formation process of various networked complex systems can be extracted, including protein-protein interaction, ecology, and social network systems. The recovered evolution process has demonstrations of immense scientific values, such as interpreting the evolution of protein-protein interaction network, facilitating structure prediction, and particularly revealing the key co-evolution features of network structures such as preferential attachment, community structure, local clustering, degree-degree correlation that could not be explained collectively by previous theories. Intriguingly, we discover that for large networks, if the performance of the machine learning model is slightly better than a random guess on the pairwise order of links, reliable restoration of the overall network formation process can be achieved. This suggests that evolution history restoration is generally highly feasible on empirical networks.

2.
Phys Rev E ; 109(2-1): 024119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491572

RESUMO

Complex molecular details of transcriptional regulation can be coarse-grained by assuming that reaction waiting times for promoter-state transitions, the mRNA synthesis, and the mRNA degradation follow general distributions. However, how such a generalized two-state model is analytically solved is a long-standing issue. Here we first present analytical formulas of burst-size distributions for this model. Then, we derive an iterative equation for the mRNA moment-generating function, by which mRNA raw and binomial moments of any order can be conveniently calculated. The analytical results obtained in the special cases of phase-type waiting-time distributions not only provide insights into the mechanisms of complex transcriptional regulations but also bring conveniences for experimental data-based statistical inferences.


Assuntos
Modelos Genéticos , Listas de Espera , Processos Estocásticos , Transcrição Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353308

RESUMO

Stochastic differential equations (SDEs) are a powerful tool to model fluctuations and uncertainty in complex systems. Although numerical methods have been designed to simulate SDEs effectively, it is still problematic when numerical solutions may be negative, but application problems require positive simulations. To address this issue, we propose balanced implicit Patankar-Euler methods to ensure positive simulations of SDEs. Instead of considering the addition of balanced terms to explicit methods in existing balanced methods, we attempt the deletion of possible negative terms from the explicit methods to maintain positivity of numerical simulations. The designed balanced terms include negative-valued drift terms and potential negative diffusion terms. The proposed method successfully addresses the issue of divisions with very small denominators in our recently designed stochastic Patankar method. Stability analysis shows that the balanced implicit Patankar-Euler method has much better stability properties than our recently designed composite Patankar-Euler method. Four SDE systems are used to examine the effectiveness, accuracy, and convergence properties of balanced implicit Patankar-Euler methods. Numerical results suggest that the proposed balanced implicit Patankar-Euler method is an effective and efficient approach to ensure positive simulations when any appropriate stepsize is used in simulating SDEs of biological regulatory systems.

4.
Genome Res ; 34(1): 106-118, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38171575

RESUMO

Revealing how transcriptional bursting kinetics are genomically encoded is challenging because genome structures are stochastic at the organization level and are suggestively linked to gene transcription. To address this challenge, we develop a generic theoretical framework that integrates chromatin dynamics, enhancer-promoter (E-P) communication, and gene-state switching to study transcriptional bursting. The theory predicts that power law can be a general rule to quantitatively describe bursting modulations by E-P spatial communication. Specifically, burst frequency and burst size are up-regulated by E-P communication strength, following power laws with positive exponents. Analysis of the scaling exponents further reveals that burst frequency is preferentially regulated. Bursting kinetics are down-regulated by E-P genomic distance with negative power-law exponents, and this negative modulation desensitizes at large distances. The mutual information between burst frequency (or burst size) and E-P spatial distance further reveals essential characteristics of the information transfer from E-P communication to transcriptional bursting kinetics. These findings, which are in agreement with experimental observations, not only reveal fundamental principles of E-P communication in transcriptional bursting but also are essential for understanding cellular decision-making.


Assuntos
Cromatina , Transcrição Gênica , Cromossomos , Regiões Promotoras Genéticas
5.
Math Biosci ; 367: 109127, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070763

RESUMO

Gene expression is a stochastic and noisy process often occurring in "bursts". Experiments have shown that the compartmentalization of proteins by liquid-liquid phase separation is conducive to reducing the noise of gene expression. Therefore, an important goal is to explore the role of bursts in phase separation noise reduction processes. We propose a coupled model that includes phase separation and a two-state gene expression process. Using the timescale separation method, we obtain approximate solutions for the expectation, variance, and noise strength of the dilute phase. We find that a higher burst frequency weakens the ability of noise reduction by phase separation, but as the burst size increases, this ability first increases and then decreases. This study provides a deeper understanding of phase separation to reduce noise in the stochastic gene expression with burst kinetics.


Assuntos
Separação de Fases , Proteínas , Processos Estocásticos
6.
Pain ; 165(4): 908-921, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851391

RESUMO

ABSTRACT: Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pretrained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.


Assuntos
Canais de Sódio Disparados por Voltagem , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo , Dor/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo
7.
PLoS Comput Biol ; 19(12): e1011722, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38109463

RESUMO

Recent experimental evidence strongly supports that three-dimensional (3D) long-range enhancer-promoter (E-P) interactions have important influences on gene-expression dynamics, but it is unclear how the interaction information is translated into gene expression over time (4D). To address this question, we developed a general theoretical framework (named as a 4D nucleome equation), which integrates E-P interactions on chromatin and biochemical reactions of gene transcription. With this equation, we first present the distribution of mRNA counts as a function of the E-P genomic distance and then reveal a power-law scaling of the expression level in this distance. Interestingly, we find that long-range E-P interactions can induce bimodal and trimodal mRNA distributions. The 4D nucleome equation also allows for model selection and parameter inference. When this equation is applied to the mouse embryonic stem cell smRNA-FISH data and the E-P genomic-distance data, the predicted E-P contact probability and mRNA distribution are in good agreement with experimental results. Further statistical inference indicates that the E-P interactions prefer to modulate the mRNA level by controlling promoter activation and transcription initiation rates. Our model and results provide quantitative insights into both spatiotemporal gene-expression determinants (i.e., long-range E-P interactions) and cellular fates during development.


Assuntos
Cromatina , Cromossomos , Animais , Camundongos , Cromatina/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Expressão Gênica , Elementos Facilitadores Genéticos/genética
8.
Biophys J ; 122(20): 4023-4041, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37653725

RESUMO

The mRNA life cycle is a complex biochemical process, involving transcription initiation, elongation, termination, splicing, and degradation. Each of these molecular events is multistep and can create a memory. The effect of this molecular memory on gene expression is not clear, although there are many related yet scattered experimental reports. To address this important issue, we develop a general theoretical framework formulated as a master equation in the sense of queue theory, which can reduce to multiple previously studied gene models in limiting cases. This framework allows us to interpret experimental observations, extract kinetic parameters from experimental data, and identify how the mRNA kinetics vary under regulatory influences. Notably, it allows us to evaluate the influences of elongation processes on mature RNA distribution; e.g., we find that the non-exponential elongation time can induce the bimodal mRNA expression and there is an optimal elongation noise intensity such that the mature RNA noise achieves the lowest level. In a word, our framework can not only provide insight into complex mRNA life processes but also bridge a dialogue between theoretical studies and experimental data.


Assuntos
Modelos Genéticos , RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Processos Estocásticos , RNA/genética , Transcrição Gênica
9.
ArXiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502628

RESUMO

Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction (DTI) network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor datasets from a pool of over 1,000 targets in the PPI network. We employ three distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pre-trained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of over 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. Additionally, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.

10.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428041

RESUMO

Stochastic differential equations (SDE) are a powerful tool to model biological regulatory processes with intrinsic and extrinsic noise. However, numerical simulations of SDE models may be problematic if the values of noise terms are negative and large, which is not realistic for biological systems since the molecular copy numbers or protein concentrations should be non-negative. To address this issue, we propose the composite Patankar-Euler methods to obtain positive simulations of SDE models. A SDE model is separated into three parts, namely, the positive-valued drift terms, negative-valued drift terms, and diffusion terms. We first propose the deterministic Patankar-Euler method to avoid negative solutions generated from the negative-valued drift terms. The stochastic Patankar-Euler method is designed to avoid negative solutions generated from both the negative-valued drift terms and diffusion terms. These Patankar-Euler methods have the strong convergence order of a half. The composite Patankar-Euler methods are the combinations of the explicit Euler method, deterministic Patankar-Euler method, and stochastic Patankar-Euler method. Three SDE system models are used to examine the effectiveness, accuracy, and convergence properties of the composite Patankar-Euler methods. Numerical results suggest that the composite Patankar-Euler methods are effective methods to ensure positive simulations when any appropriate stepsize is used.


Assuntos
Modelos Biológicos , Processos Estocásticos , Difusão
11.
R Soc Open Sci ; 10(4): 221057, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035293

RESUMO

Gene expression has inherent stochasticity resulting from transcription's burst manners. Single-cell snapshot data can be exploited to rigorously infer transcriptional burst kinetics, using mathematical models as blueprints. The classical telegraph model (CTM) has been widely used to explain transcriptional bursting with Markovian assumptions. However, growing evidence suggests that the gene-state dwell times are generally non-exponential, as gene-state switching is a multi-step process in organisms. Therefore, interpretable non-Markovian mathematical models and efficient statistical inference methods are urgently required in investigating transcriptional burst kinetics. We develop an interpretable and tractable model, the generalized telegraph model (GTM), to characterize transcriptional bursting that allows arbitrary dwell-time distributions, rather than exponential distributions, to be incorporated into the ON and OFF switching process. Based on the GTM, we propose an inference method for transcriptional bursting kinetics using an approximate Bayesian computation framework. This method demonstrates an efficient and scalable estimation of burst frequency and burst size on synthetic data. Further, the application of inference to genome-wide data from mouse embryonic fibroblasts reveals that GTM would estimate lower burst frequency and higher burst size than those estimated by CTM. In conclusion, the GTM and the corresponding inference method are effective tools to infer dynamic transcriptional bursting from static single-cell snapshot data.

12.
J Chem Inf Model ; 63(5): 1472-1489, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36826415

RESUMO

Drug addiction is a global public health crisis, and the design of antiaddiction drugs remains a major challenge due to intricate mechanisms. Since experimental drug screening and optimization are too time-consuming and expensive, there is urgent need to develop innovative artificial intelligence (AI) methods for addressing the challenge. We tackle this challenge by topology-inferred drug addiction learning (TIDAL) built from integrating multiscale topological Laplacians, deep bidirectional transformer, and ensemble-assisted neural networks (EANNs). Multiscale topological Laplacians are a novel class of algebraic topology tools that embed molecular topological invariants and algebraic invariants into its harmonic spectra and nonharmonic spectra, respectively. These invariants complement sequence information extracted from a bidirectional transformer. We validate the proposed TIDAL framework on 22 drug addiction related, 4 hERG, and 12 DAT data sets, which suggests that the proposed TIDAL is a state-of-the-art framework for the modeling and analysis of drug addiction data. We carry out cross-target analysis of the current drug addiction candidates to alert their side effects and identify their repurposing potentials. Our analysis reveals drug-mediated linear and bilinear target correlations. Finally, TIDAL is applied to shed light on relative efficacy, repurposing potential, and potential side effects of 12 existing antiaddiction medications. Our results suggest that TIDAL provides a new computational strategy for pressingly needed antisubstance addiction drug development.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Inteligência Artificial , Algoritmos , Redes Neurais de Computação , Desenvolvimento de Medicamentos
13.
Nucleic Acids Res ; 51(1): 68-83, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36583343

RESUMO

Gene expression in mammalian cells is highly variable and episodic, resulting in a series of discontinuous bursts of mRNAs. A challenge is to understand how static promoter architecture and dynamic feedback regulations dictate bursting on a genome-wide scale. Although single-cell RNA sequencing (scRNA-seq) provides an opportunity to address this challenge, effective analytical methods are scarce. We developed an interpretable and scalable inference framework, which combined experimental data with a mechanistic model to infer transcriptional burst kinetics (sizes and frequencies) and feedback regulations. Applying this framework to scRNA-seq data generated from embryonic mouse fibroblast cells, we found Simpson's paradoxes, i.e. genome-wide burst kinetics exhibit different characteristics in two cases without and with distinguishing feedback regulations. We also showed that feedbacks differently modulate burst frequencies and sizes and conceal the effects of transcription start site distributions on burst kinetics. Notably, only in the presence of positive feedback, TATA genes are expressed with high burst frequencies and enhancer-promoter interactions mainly modulate burst frequencies. The developed inference method provided a flexible and efficient way to investigate transcriptional burst kinetics and the obtained results would be helpful for understanding cell development and fate decision.


Assuntos
Mamíferos , Transcrição Gênica , Animais , Camundongos , Retroalimentação , Cinética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Mamíferos/genética
14.
Phys Chem Chem Phys ; 24(43): 26600-26608, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36286225

RESUMO

Gene-expression bimodality, as a potential mechanism generating phenotypic cell diversity, can enhance the survival of cells in a fluctuating environment. Previous studies have shown that intrinsic or extrinsic regulations could induce bimodal gene expressions, but it is unclear whether this bimodality can occur without regulation. Here we develop an interpretable and tractable model, namely a generalized telegraph model (GTM), which considers silent transcription intervals and translational bursting, each being characterized by a general distribution. Using the queuing theory, we derive the analytical expressions of protein distributions, and show that non-exponential inactive times and translational bursting can lead to two peaks of the protein distribution away from the origin, which are different from those occurring in classical telegraph models. We also find that both silent-interval noise and translational burst-size noise can amplify gene-expression noise and induce diverse dynamic expression patterns. Our results not only provide an alternative mechanism of phenotypic switching but also could be used in explaining the bimodal phenomenon in experimental observations.


Assuntos
Regulação da Expressão Gênica , Processos Estocásticos
15.
Math Biosci Eng ; 19(8): 8426-8451, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35801472

RESUMO

Transcription involves gene activation, nuclear RNA export (NRE) and RNA nuclear retention (RNR). All these processes are multistep and biochemical. A multistep reaction process can create memories between reaction events, leading to non-Markovian kinetics. This raises an unsolved issue: how does molecular memory affect stochastic transcription in the case that NRE and RNR are simultaneously considered? To address this issue, we analyze a non-Markov model, which considers multistep activation, multistep NRE and multistep RNR can interpret many experimental phenomena. In order to solve this model, we introduce an effective transition rate for each reaction. These effective transition rates, which explicitly decode the effect of molecular memory, can transform the original non-Markov issue into an equivalent Markov one. Based on this technique, we derive analytical results, showing that molecular memory can significantly affect the nuclear and cytoplasmic mRNA mean and noise. In addition to the results providing insights into the role of molecular memory in gene expression, our modeling and analysis provide a paradigm for studying more complex stochastic transcription processes.


Assuntos
RNA Nuclear , RNA , Núcleo Celular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear/metabolismo , Processos Estocásticos
16.
Phys Rev E ; 105(6-1): 064409, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854490

RESUMO

Intracellular biochemical networks often display large fluctuations in the molecule numbers or the concentrations of reactive species, making molecular approaches necessary for system descriptions. For Markovian reaction networks, the fluctuation-dissipation theorem (FDT) has been well established and extensively used in fast evaluation of fluctuations in reactive species. For non-Markovian reaction networks, however, the similar FDT has not been established so far. Here, we present a generalized FDT (gFDT) for a large class of non-Markovian reaction networks where general intrinsic-event waiting-time distributions account for the effect of intrinsic noise and general stochastic reaction delays represent the impact of extrinsic noise from environmental perturbations. The starting point is a generalized chemical master equation (gCME), which describes the probabilistic behavior of an equivalent Markovian reaction network and identifies the structure of the original non-Markovian reaction network in terms of stoichiometries and effective transition rates (extensions of common reaction propensity functions). From this formulation follows directly the solution of the linear noise approximation of the stationary gCME for all the components in the non-Markovian reaction network. While the gFDT can quickly trace noisy sources in non-Markovian reaction networks, example analysis verifies its effectiveness.

17.
Math Biosci Eng ; 19(4): 3313-3336, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35341253

RESUMO

While transcription often occurs in a bursty manner, various possible regulations can lead to complex promoter patterns such as promoter cycles, giving rise to an important question: How do promoter kinetics shape transcriptional bursting kinetics? Here we introduce and analyze a general model of the promoter cycle consisting of multi-OFF states and multi-ON states, focusing on the effects of multi-ON mechanisms on transcriptional bursting kinetics. The derived analytical results indicate that burst size follows a mixed geometric distribution rather than a single geometric distribution assumed in previous studies, and ON and OFF times obey their own mixed exponential distributions. In addition, we find that the multi-ON mechanism can lead to bimodal burst-size distribution, antagonistic timing of ON and OFF, and diverse burst frequencies, each further contributing to cell-to-cell variability in the mRNA expression level. These results not only reveal essential features of transcriptional bursting kinetics patterns shaped by multi-state mechanisms but also can be used to the inferences of transcriptional bursting kinetics and promoter structure based on experimental data.


Assuntos
Modelos Genéticos , Transcrição Gênica , Cinética , Regiões Promotoras Genéticas , RNA Mensageiro/genética
18.
NPJ Syst Biol Appl ; 8(1): 10, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338169

RESUMO

Although multistability is an important dynamic property of a wide range of complex systems, it is still a challenge to develop mathematical models for realising high order multistability using realistic regulatory mechanisms. To address this issue, we propose a robust method to develop multistable mathematical models by embedding bistable models together. Using the GATA1-GATA2-PU.1 module in hematopoiesis as the test system, we first develop a tristable model based on two bistable models without any high cooperative coefficients, and then modify the tristable model based on experimentally determined mechanisms. The modified model successfully realises four stable steady states and accurately reflects a recent experimental observation showing four transcriptional states. In addition, we develop a stochastic model, and stochastic simulations successfully realise the experimental observations in single cells. These results suggest that the proposed method is a general approach to develop mathematical models for realising multistability and heterogeneity in complex systems.


Assuntos
Modelos Teóricos
19.
Phys Rev E ; 105(1-1): 014405, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193181

RESUMO

Gene expression in individual cells is inherently variable and sporadic, leading to cell-to-cell variability in mRNA and protein levels. Recent single-cell and single-molecule experiments indicate that promoter architecture and translational bursting play significant roles in controlling gene expression noise and generating the phenotypic diversity that life exhibits. To quantitatively understand the impact of these factors, it is essential to construct an accurate mathematical description of stochastic gene expression and find the exact analytical results, which is a formidable task. Here, we develop a stochastic model of bursty gene expression, which considers the complex promoter architecture governing the variability in mRNA expression and a general distribution characterizing translational burst. We derive the analytical expression for the corresponding protein steady-state distribution and all moment statistics of protein counts. We show that the total protein noise can be decomposed into three parts: the low-copy noise of protein due to probabilistic individual birth and death events, the noise due to stochastic switching between promoter states, and the noise resulting from translational busting. The theoretical results derived provide quantitative insights into the biochemical mechanisms of stochastic gene expression.

20.
Math Biosci Eng ; 19(2): 2095-2119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35135243

RESUMO

eRNAs as the products of enhancers can regulate gene expression via various possible ways, but which regulation way is more reasonable is debatable in biology, and in particular, how eRNAs impact gene expression remains unclear. Here we introduce a mechanistic model of gene expression to address these issues. This model considers three possible regulation ways of eRNA: Type-I by which eRNA regulates transcriptional activity by facilitating the formation of enhancer-promoter (E-P) loop, Type-II by which eRNA directly promotes the mRNA production rate, and mixed regulation (i.e., the combination of Type-I and Type-II). We show that with the increase of the E-P loop length, mRNA distribution can transition from unimodality to bimodality or vice versa in all the three regulation cases. However, in contrast to the other two regulations, Type-II regulation can lead to the highest mean mRNA level and the lowest mRNA noise, independent of the E-P loop length. These results would not only reveal the essential mechanism of how eRNA regulates gene expression, but also imply a new mechanism for phenotypic switching, namely the E-P loop can induce phenotypic switching.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Expressão Gênica , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA