Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Psychiatry ; 15: 1477953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39421064

RESUMO

Background: Schizophrenia, a severe mental disorder, is often complicated by Type 2 Diabetes Mellitus (T2DM), which can further impact patients' psychological health. This study investigated the differences in eating attitudes, depression, and insight between schizophrenic patients with and without comorbid T2DM and explored the correlations among these factors to provide empirical support for clinical interventions. Methods: This case-control study was conducted in Guangdong Province, China. From December 2022 to May 2023, a total of 300 hospitalized patients with schizophrenia (92 with comorbid T2DM and 208 without T2DM) were recruited. Data were collected using the Personal Information Form, Eating Attitudes Test (EAT-26), Hamilton Depression Scale (HAMD), and Insight and Treatment Attitudes Questionnaire (ITAQ). Statistical analyses, including t-tests, ANOVA, and multiple linear regression, were performed to examine differences and predictive factors of eating attitudes among patients. This study was approved by the Ethics Committee of the Affiliated Brain Hospital of Guangzhou Medical University (approval number: 2020028), and written informed consent was obtained from all participants. Results: Patients with schizophrenia and comorbid T2DM exhibited significantly higher risks of eating disorders (EAT-26: 12.54 ± 9.77 vs. 9.07 ± 7.90, P=0.003), more severe depression (HAMD: 14.71 ± 7.36 vs. 11.80 ± 6.04, P=0.001), and poorer insight (ITAQ: 10.46 ± 6.01 vs. 12.16 ± 6.09, P=0.025) compared to those without T2DM. Regression analysis revealed that gender, weekly exercise frequency, depression, and insight were significant predictors of eating attitudes among patients with T2DM. For patients without T2DM, weekly exercise frequency, smoking status, and insight were significant predictors. Conclusion: Schizophrenic patients with comorbid T2DM are facing increasing risks related to eating attitudes, depression, and insight which highlight the need for targeted interventions. Regular psychological assessment and tailored support strategies might improve their mental health and quality of life. Future research should focus on longitudinal studies to clarify causal relationships and develop more effective interventions.

2.
Ecotoxicol Environ Saf ; 285: 117138, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39353377

RESUMO

The problem of potentially toxic metal pollution is increasingly acute with the development of human society. In this study, we investigated the remediation of nickel (Ni) and cadmium (Cd) co-contamination through inoculating rice with three new-isolated Ni- and Cd-resistant plant growth-promoting rhizobacteria (PGPR) Y3, Y4, and Y5. These three strains possessed growth-promoting properties, including 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, the ability of indoleacetic acid (IAA) production, phosphate solubilization, siderophores production, and exopolysaccharide (EPS) development. According to 16S rDNA sequence homology, strains Y3, Y4, and Y5 were identified as Pseudomonas sp., Chryseobacterium sp., and Enterobacter sp., respectively. Based on the results of rice germination experiments conducted under combined toxicity, we set the contamination concentrations for Ni2+ at 20 µg mL-1 and Cd2+ at 40 µg mL-1. Then we conducted potting experiments at these concentration levels to study the effects of strains Y3, Y4, and Y5 on rice growth under synergistic Ni and Cd stress. The results indicated that the inoculated strains Y3, Y4, and Y5 were effective in promoting the growth of rice seedlings under the combined stress of Ni and Cd, and conferring tolerance to Ni and Cd by increasing the antioxidant enzyme activities of the seedlings. Among them, strain Y3 exhibited stronger ACC deaminase activity, IAA production capacity, and EPS production capacity, showing the most pronounced growth-promoting effect on rice. It was demonstrated that after inoculation with strain Y3, the germination rate of rice seeds increased by 43 %, the fresh weight of stems improved by 35 %, and the chlorophyll content enhanced by 70 % and other growth-promoting phenomena. Additionally, under Ni and Cd stress, strain Y5 performed better than strain Y4 in terms of IAA production capacity and its influence on rice root growth, suggesting that IAA production might play a specifically essential role in root growth under Ni and Cd stress.


Assuntos
Cádmio , Ácidos Indolacéticos , Níquel , Oryza , Plântula , Poluentes do Solo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/efeitos dos fármacos , Níquel/toxicidade , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Plântula/efeitos dos fármacos , Plântula/microbiologia , Plântula/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Carbono-Carbono Liases/metabolismo , Microbiologia do Solo , Pseudomonas , Germinação/efeitos dos fármacos , Sideróforos , Enterobacter/efeitos dos fármacos , Biodegradação Ambiental , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
3.
Sci Total Environ ; 955: 176862, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39414053

RESUMO

Perfluorooctanoic acid (PFOA), a synthetic perfluoroalkyl compound, has caused extensive soil contamination over several decades, posing serious health risks to humans through bioaccumulation in plants and subsequent transfer via the food chain. Due to the durability of PFOA in soil and its propensity to migrate and accumulate in plants, phytoremediation has been recognized as an effective remediation method. However, the phytotoxicity of PFOA and the adsorption of PFOA by soil hindered the efficiency of traditional phytoremediation. Therefore, this research employed plant growth-promoting rhizobacteria (PGPR)-assisted phytoremediation, augmented with the bio-stimulant fulvic acid (FA), to devise an effective soil remediation strategy tailored for PFOA contamination removal. The results indicated that Rhizobium sp. strain ZY2, endowed with PGP traits, significantly increased the root weight and shoot weight of pak choi by 194.67 % and 37.38 %, respectively, versus the non-inoculation treatment. Furthermore, inoculation with strain ZY2 enhanced soil alkaline phosphatase, protease, and cellulase activities, bolstering soil nutrient cycling and resource availability. On the other hand, compared to treatment with strain ZY2 alone, additional exogenous FA drastically reduced the residual fraction of PFOA in soil from 34.1 % to 1.9 %, likely mediated by complex electrostatic and hydrophobic interactions between FA and soil components. Ultimately, FA addition increased PFOA concentration in pak choi by 8.1-fold. Furthermore, FA could increase the relative abundance of beneficial rhizosphere bacteria (Actinobacterota and Methylotener, etc.), thereby creating a more favorable microenvironment for plant growth. In conclusion, the combined use of strain ZY2 and FA in phytoremediation notably strengthened plant resilience to PFOA, minimized soil sorption, and achieved high remediation efficacy, offering an effective system to mitigate PFOA-soil pollution's environmental and health risks.

4.
Plast Reconstr Surg ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39287625

RESUMO

BACKGROUND: Burn wound healing is a complex physiological process that requires complicated regulation by different cells and tissues. Brown adipose tissue (BAT) plays a key role in the hypermetabolic response to severe burns. However, it is unclear whether BAT contributes to burn wound healing. METHODS: Mice were divided into two groups: brown adipose tissue removal group (BR group) and control group. Burn wounds were created on the backs of mice (weighing 20-25g), who were exposed to 100°C hot water for 12 seconds using a homemade burn tube, resulting in a burned area measuring 10 mm in diameter. The treatments were applied once a day for 10 days. Full-thickness wound tissue was collected on days 1, 4, 7, 10, and analyzed by immunostaining of CD31,α-SMA+, F4/80 and CD206 (n = 3). RESULTS: On days 4, 7, and 10, the wound healing rate of the control group was significantly higher than that of the BR group. In the histological analysis, evident inflammatory infiltration, severe collagen denaturation in the BR group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the IL-17 pathway was enriched and related genes were up-regulated in the heat map. Immunostaining and transcriptional analyses revealed that angiogenesis and fibroblast were enhanced in the control group, fewer CD206-positive M2 macrophages and higher levels of inflammatory infiltration in the BR group. CONCLUSIONS: Brown adipose tissue may reduce inflammatory signaling in burn wounds by increasing the IL-17A-HIF1α axis and driving M2 macrophage polarization.

5.
Sci Total Environ ; 951: 175804, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39209176

RESUMO

The Yangtze River Delta (YRD) experienced record-breaking heat in the summer of 2022. However, the urban heat pattern and the role of urban expansion over the last two decades in this hot summer have not been explored. Using the advanced mesoscale Weather Research and Forecasting (WRF) model, we reproduced the fine spatial features and investigated the urban heat island (UHI) and dry island (UDI) effects during the two identified heatwaves in 2022. We further replace the current (2020) land use with the historical (2001) land use in WRF to evaluate the impacts of urban expansion from 2001 to 2020 on air temperature and moisture. Our finding revealed that the conversion of land use resulted in near-surface warming and drying, with pronounced diurnal variations, especially during the July heatwave. The analysis of surface energy balance demonstrated that the substantial decrease in evapotranspiration (ET) was the primary driver of daytime warming, elevating temperatures by 7 °C (July heatwave) and 2 °C (August heatwave). This ET reduction also led to the strong daytime coupling of warming and drying effects over new urban areas. At night, the release of stored heat resulted in the temperature increase of 2 °C (1 °C) during July (August) heatwave, highlighting the nighttime as a critical period for heightened thermal risk. Additionally, urban expansion at the periphery contributed modestly to the warming of urban cores, exacerbating conditions in an already hot environment. This study enhances understanding of the impacts of urban expansion on air temperature and humidity during extreme heatwaves, thereby supporting targeted adaptation and mitigation for extreme events within large cities.

6.
Sci Total Environ ; 944: 173838, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879025

RESUMO

The excessive accumulation of dibutyl phthalate (DBP) in soil poses a serious threat to soil ecosystems and crop safety production. Electrokinetic-assisted phytoremediation (EKPR) has been considered as a potential technology for remediating organic contaminated soils. In order to investigate the effect of different electric fields on removal efficiency of DBP, three kinds of electric fields were set up in this study (1 V·cm-1, 2 V·cm-1 and 3 V·cm-1). The results showed that 59 % of DBP in soil was removed by maize (Zea mays L.) within 20 d in low-intensity electric field (1 V·cm-1), and the accumulation of DBP in maize tissues decreased significantly compared to the non-electrified treatment group. Interestingly, it could be observed that the low-intensity electric field could maintain ion homeostasis and improve the photosynthetic efficiency of the plant, thereby relieving the inhibition of DBP on plant growth and increasing the chlorophyll content (94.1 %) of maize. However, the removal efficiency of DBP by maize decreased significantly under the medium-intensity (2 V·cm-1) and high-intensity electric field (3 V·cm-1). Moreover, the important roles of soil enzyme and rhizosphere bacterial community in low-electric field were also investigated and discussed. This study provided a new perspective for exploring the mechanism of removing DBP through EKPR.


Assuntos
Biodegradação Ambiental , Dibutilftalato , Poluentes do Solo , Zea mays , Zea mays/metabolismo , Poluentes do Solo/metabolismo , Dibutilftalato/metabolismo , Solo/química
7.
Environ Sci Pollut Res Int ; 31(6): 8703-8718, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180669

RESUMO

Due to their extremely toxic properties, 226Ra and it daughters (222Rn, 210Pb, and 210Po) in drinking groundwater require monitoring. Recent studies have reported exceptionally high levels of natural 210Po (up to 10,000 Bq/m3), 226Ra, and 222Rn isotopes in groundwater. This study aims to provide background data on 226Ra and its daughter radionuclides in the typical agricultural-industrial Dongshan Bay (DSB) before the construction of Zhangzhou Nuclear Power Plant (Zhangzhou NPP). The measurement results indicate that no abnormally high activities of 210Po and 210Pb were detected in the investigated wells. Strong positive correlations between 210Pb and 210Po, as well as between 222Rn and 210Pb activities, suggest that the origins of 210Pb and 210Po in groundwater are strongly influenced by the decay of the parent radionuclides 222Rn and 210Pb, respectively. In the DSB coastal zone groundwater, significant deficiencies of 210Po relative to 210Pb and 210Pb relative to 222Rn were observed, providing further evidence that 210Po and 210Pb are also effectively scavenged due to their geochemical properties (specifically particle affinity) within the groundwater-aquifer system. A systematic comparison among all relevant water bodies in the DSB revealed that the activity concentrations of 210Pb and 210Po in groundwater were the highest, except for rainwater. Based on the evaluation of 210Pb sources, the results imply that submarine groundwater discharge (SGD) is an important pathway for transferring radionuclides (such as 210Pb) from land to the nearshore marine environment, even though the study area has a lower 210Pb background groundwater. By considering all the 210Pb's sources in the DSB, we found low 210Pb background groundwater discharge still needs to be taken into account for small-scale bays. This is because SGD was calculated to be one of the most important 210Pb sources in the bay during observation season. Regardless of whether the system is in a normal state or a nuclear accident emergency state, greater attention should be paid to the groundwater discharge of radionuclides into the ocean.


Assuntos
Água Subterrânea , Núcleo Familiar , Humanos , Baías/química , Chumbo , Água Subterrânea/química , Radioisótopos
9.
Clin Case Rep ; 11(12): e8258, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054194

RESUMO

Unicentric Castleman disease, particularly the hypervascular variant subtype, commonly presents as a localized lymphadenopathy without systemic symptoms. Surgical excision is often curative for this subtype, leading to a good prognosis. However, some patients with autoimmune complications may require additional systemic therapy along with surgery. Accurate diagnosis through a combination of clinical, radiological, and pathological findings is crucial for optimal management.

10.
Nature ; 618(7967): 1017-1023, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316672

RESUMO

The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.


Assuntos
Diacilglicerol Colinofosfotransferase , Resistência à Doença , Edição de Genes , Oryza , Melhoramento Vegetal , Doenças das Plantas , Resistência à Doença/genética , Edição de Genes/métodos , Genoma de Planta/genética , Oryza/enzimologia , Oryza/genética , Oryza/microbiologia , Fosfatidilinositóis/metabolismo , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Alelos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo
11.
Microbiol Spectr ; 11(3): e0315022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37139552

RESUMO

Mulching is an important agricultural management tool for increasing watermelon productivity and land-use efficiency because it helps improve water use efficiency and reduce soil erosion. However, there is relatively little available information regarding the effects of long-term continuous monoculture farming on soil fungal communities and related fungal pathogens in arid and semiarid regions. In this study, we characterized the fungal communities of four treatment groups, including gravel-sand-mulched farmland, gravel-sand-mulched grassland, fallow gravel-sand-mulched grassland, and native grassland, using amplicon sequencing. Our results revealed that the soil fungal communities differed significantly between mulched farmland and mulched grassland as well as the fallow mulched grassland. Gravel-sand mulch significantly impaired the diversity and composition of soil fungal communities. Soil fungal communities were more sensitive to gravel-sand mulch in grassland than in other habitats. Long-term continuous monoculture (more than 10 years) led to decreased abundance of Fusarium species, which contains include agronomically important plant pathogens. In the gravel-mulched cropland, some Penicillium and Mortierella fungi were significantly enriched with increasing mulch duration, suggesting potential beneficial properties of those fungi that could be applied to disease control. We also found that long-term gravel mulching in continuous monoculture farming could potentially form disease-suppressive soils and alter soil microbial biodiversity and fertility. Our study provides insights into the exploration of novel agricultural management strategies along with continuous monoculture practice to control watermelon wilt disease by maintaining a more sustainable and healthier soil environment. IMPORTANCE Gravel-sand mulching is a traditional agricultural practice in arid and semiarid regions, providing a surface barrier for soil and water conservation. However, application of such practice in monocropping systems may lead to outbreaks of several devastating plant diseases, such as watermelon Fusarium wilt. Our results with amplicon sequencing suggest that soil fungal communities differ significantly between mulched farmland and mulched grassland and are more sensitive to gravel-sand mulch in grassland. Under continuous monoculture regimens, long-term gravel mulch is not necessarily detrimental and may result in decreased Fusarium abundance. However, some known beneficial soil fungi may be enriched in the gravel-mulch cropland as mulch duration increases. A possible explanation for the reduction in Fusarium abundance may be the formation of disease-suppressive soils. This study provides insight into the need to explore alternative strategies using beneficial microbes for sustainable watermelon wilt control in continuous monocropping system.


Assuntos
Citrullus , Fusarium , Solo , Areia , Agricultura/métodos , Biodiversidade , Fusarium/genética , China , Microbiologia do Solo
12.
Chem Sci ; 14(5): 1286-1290, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36756330

RESUMO

Due to the high reactivity of the triple bond, P-stereogenic alkynylphosphines could be easily derivatized, serving as universal building blocks for structurally diverse phosphine compounds. However, the synthesis of alkynylphosphines via direct P-C bond formation was unprecedented. Here, we report an efficient method for the synthesis of P-stereogenic alkynylphosphines with high enantioselectivity via a Ni-catalyzed asymmetric cross-coupling reaction. The reaction could tolerate a variety of functional groups, affording products that can be converted into useful phosphine derivatives.

13.
Mol Plant Microbe Interact ; 36(7): 452-456, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36802869

RESUMO

Bipolaris sorokiniana, one of the most devastating hemibiotrophic fungal pathogens, causes root rot, crown rot, leaf blotching, and black embryos of gramineous crops worldwide, posing a serious threat to global food security. However, the host-pathogen interaction mechanism between B. sorokiniana and wheat remains poorly understood. To facilitate related studies, we sequenced and assembled the genome of B. sorokiniana LK93. Nanopore long reads and next generation sequencing short reads were applied in the genome assembly, and the final 36.4-Mb genome assembly contains 16 contigs with the contig N50 of 2.3 Mb. Subsequently, we annotated 11,811 protein-coding genes. Of these, 10,620 were functional genes, 258 of which were identified as secretory proteins, including 211 predicted effectors. Additionally, the 111,581-bp mitogenome of LK93 was assembled and annotated. The LK93 genomes presented in this study will facilitate research in the B. sorokiniana-wheat pathosystem for better control of crop diseases. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Genoma Mitocondrial , Ascomicetos/genética , Triticum/microbiologia , Genoma Mitocondrial/genética , Bipolaris/genética , Doenças das Plantas/microbiologia
14.
Nature ; 610(7933): 744-751, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071169

RESUMO

Microbial colonization of the mammalian intestine elicits inflammatory or tolerogenic T cell responses, but the mechanisms controlling these distinct outcomes remain poorly understood, and accumulating evidence indicates that aberrant immunity to intestinal microbiota is causally associated with infectious, inflammatory and malignant diseases1-8. Here we define a critical pathway controlling the fate of inflammatory versus tolerogenic T cells that respond to the microbiota and express the transcription factor RORγt. We profiled all RORγt+ immune cells at single-cell resolution from the intestine-draining lymph nodes of mice and reveal a dominant presence of T regulatory (Treg) cells and lymphoid tissue inducer-like group 3 innate lymphoid cells (ILC3s), which co-localize at interfollicular regions. These ILC3s are distinct from extrathymic AIRE-expressing cells, abundantly express major histocompatibility complex class II, and are necessary and sufficient to promote microbiota-specific RORγt+ Treg cells and prevent their expansion as inflammatory T helper 17 cells. This occurs through ILC3-mediated antigen presentation, αV integrin and competition for interleukin-2. Finally, single-cell analyses suggest that interactions between ILC3s and RORγt+ Treg cells are impaired in inflammatory bowel disease. Our results define a paradigm whereby ILC3s select for antigen-specific RORγt+ Treg cells, and against T helper 17 cells, to establish immune tolerance to the microbiota and intestinal health.


Assuntos
Tolerância Imunológica , Intestinos , Linfócitos , Microbiota , Linfócitos T Reguladores , Animais , Imunidade Inata , Integrina alfaV/metabolismo , Interleucina-2/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Linfonodos/citologia , Linfonodos/imunologia , Linfócitos/imunologia , Microbiota/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Análise de Célula Única , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Fatores de Transcrição/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia
15.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076919

RESUMO

Arbuscular mycorrhizal fungi (AMF) are important symbiotic microorganisms in soil that engage in symbiotic relationships with legumes, resulting in mycorrhizal symbiosis. Establishment of strong symbiotic relationships between AMF and legumes promotes the absorption of nitrogen by plants. Ammonium nitrogen can be directly utilised by plants following ammonium transport, but there are few reports on ammonium transporters (AMTs) promoting ammonium nitrogen transport during AM symbiosis. Lotus japonicus is a typical legume model plant that hosts AMF. In this study, we analysed the characteristics of the Lotus japonicus ammonium transporter LjAMT2;2, and found that it is a typical ammonium transporter with mycorrhizal-induced and ammonium nitrogen transport-related cis-acting elements in its promoter region. LjAMT2;2 facilitated ammonium transfer in yeast mutant supplement experiments. In the presence of different nitrogen concentrations, the LjAMT2;2 gene was significantly upregulated following inoculation with AMF, and induced by low nitrogen. Overexpression of LjAMT2;2 increased the absorption of ammonium nitrogen, resulting in doubling of nitrogen content in leaves and roots, thus alleviating nitrogen stress and promoting plant growth.


Assuntos
Compostos de Amônio , Lotus , Micorrizas , Fungos , Micorrizas/genética , Nitrogênio , Proteínas de Plantas/genética , Raízes de Plantas/genética , Saccharomyces cerevisiae/genética , Simbiose/genética
16.
Nature ; 609(7925): 159-165, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35831503

RESUMO

RORγt is a lineage-specifying transcription factor that is expressed by immune cells that are enriched in the gastrointestinal tract and promote immunity, inflammation and tissue homeostasis1-15. However, fundamental questions remain with regard to the cellular heterogeneity among these cell types, the mechanisms that control protective versus inflammatory properties and their functional redundancy. Here we define all RORγt+ immune cells in the intestine at single-cell resolution and identify a subset of group 3 innate lymphoid cells (ILC3s) that expresses ZBTB46, a transcription factor specifying conventional dendritic cells16-20. ZBTB46 is robustly expressed by CCR6+ lymphoid-tissue-inducer-like ILC3s that are developmentally and phenotypically distinct from conventional dendritic cells, and its expression is imprinted by RORγt, fine-tuned by microbiota-derived signals and increased by pro-inflammatory cytokines. ZBTB46 restrains the inflammatory properties of ILC3s, including the OX40L-dependent expansion of T helper 17 cells and the exacerbated intestinal inflammation that occurs after enteric infection. Finally, ZBTB46+ ILC3s are a major source of IL-22, and selective depletion of this population renders mice susceptible to enteric infection and associated intestinal inflammation. These results show that ZBTB46 is a transcription factor that is shared between conventional dendritic cells and ILC3s, and identify a cell-intrinsic function for ZBTB46 in restraining the pro-inflammatory properties of ILC3s and a non-redundant role for ZBTB46+ ILC3s in orchestrating intestinal health.


Assuntos
Imunidade Inata , Intestinos , Linfócitos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Fatores de Transcrição , Animais , Inflamação/imunologia , Inflamação/patologia , Interleucinas , Intestinos/citologia , Intestinos/imunologia , Intestinos/patologia , Linfócitos/citologia , Linfócitos/imunologia , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ligante OX40/metabolismo , Receptores CCR6/metabolismo , Células Th17/citologia , Células Th17/imunologia , Fatores de Transcrição/metabolismo , Interleucina 22
17.
Anal Cell Pathol (Amst) ; 2022: 5259187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425695

RESUMO

Background: Immune checkpoint inhibitors are a promising therapeutic strategy for breast cancer (BRCA) patients. The tumor microenvironment (TME) can downregulate the immune response to cancer therapy. Our study is aimed at finding a TME-related biomarker to identify patients who might respond to immunotherapy. Method: We downloaded raw data from several databases including TCGA and MDACC to identify TME hub genes associated with overall survival (OS) and the progression-free interval (PFI) by WGCNA. Correlations between hub genes and either tumor-infiltrating immune cells or immune checkpoints were conducted by ssGSEA. Result: TME-related green and black modules were selected by WGCNA to further screen hub genes. Random forest and univariate and multivariate Cox regressions were applied to screen hub genes (MYO1G, TBC1D10C, SELPLG, and LRRC15) and construct a nomogram to predict the survival of BRCA patients. The C-index for the nomogram was 0.713. A DCA of the predictive model revealed that the net benefit of the nomogram was significantly higher than others and the calibration curve demonstrated a good performance by the nomogram. Only TBC1D10C was correlated with both OS and the PFI (both p values < 0.05). TBC1D10C also had a high positive association with tumor-infiltrating immune cells and common immune checkpoints (PD-1, CTLA-4, and TIGIT). Conclusion: We constructed a TME-related gene signature model to predict the survival probability of BRCA patients. We also identified a hub gene, TBC1D10C, which was correlated with both OS and the PFI and had a high positive association with tumor-infiltrating immune cells and common immune checkpoints. TBC1D10C may be a new biomarker to select patients who may benefit from immunotherapy.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteínas de Membrana/genética , Prognóstico , Microambiente Tumoral/genética
18.
J Appl Microbiol ; 133(2): 422-435, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35352442

RESUMO

AIM: The objective of this research was to screen fungal isolates originally isolated from cotton plants and measure their effects on the interactions between soybean and two aboveground pests (cabbage looper; Trichoplusia ni and soybean looper; Chrysodeixis includens) as well as a belowground pest (soybean cyst nematode; Heterodera glycines). METHODS AND RESULTS: For aboveground pests, we measured the leaf area consumed and larval weight. For our belowground pest tests, we measured shoot height, shoot fresh weight, root fresh weight and number of cysts. Out of the 50 fungal isolates tested, we tested 30 fungi in the interaction with cabbage looper, 36 for soybean looper, 41 for soybean cyst nematode. We tested 23 isolates against all pests and identified multiple isolates that significantly changed the response of pests on inoculated soybean plants versus controls. CONCLUSIONS: We identified three fungal isolates that significantly reduced both leaf area consumed aboveground by caterpillars and number of cysts produced belowground by nematodes. These isolates were an Epicoccum italicum, a Chaetomium undulatum and a Stemphylium majusculum. SIGNIFICANCE AND IMPACT OF STUDY: Overall, this study provides important insights into plant-fungal interactions and their effect on both above- and belowground pests. This study also highlights an important first step towards harnessing the potential of microbial inoculates as a tool for integrated pest management in soybeans.


Assuntos
Cistos , Fabaceae , Mariposas , Tylenchoidea , Animais , Fungos , Glycine max
19.
J Clin Transl Hepatol ; 10(1): 17-25, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35233369

RESUMO

BACKGROUND AND AIMS: Change of gut microbiota composition is associated with the outcome of hepatitis B virus (HBV) infection, yet the related mechanisms are not fully characterized. The objective of this study was to investigate the immune mechanism associated with HBV persistence induced by gut microbiota dysbiosis. METHODS: C57BL/6 mice were sterilized for gut-microbiota by using an antibiotic (ABX) mixture protocol, and were monitored for their serum endotoxin (lipopolysaccharide [LPS]) levels. An HBV-replicating mouse model was established by performing HBV-expressing plasmid pAAV/HBV1.2 hydrodynamic injection (HDI) with or without LPS, and was monitored for serum hepatitis B surface antigen, hepatitis B e antigen, HBV DNA, and cytokine levels. Kupffer cells (KCs) were purified from antibiotic-treated mice and HBV-replicating mice and analyzed for IL-10 production and T cell suppression ability. RESULTS: ABX treatment resulted in increased serum LPS levels in mice. The KCs separated from both ABX-treated and LPS-treated HBV-replicating mice showed significantly increased IL-10 production and enhanced ability to suppress IFN-γ production of TCR-activated T cells than the KCs separated from their counterpart controls. HDI of pAAV/HBV1.2 in combination with LPS in mice led to a delayed HBV clearance and early elevation of serum IL-10 levels compared to pAAV/HBV1.2 HDI alone. Moreover, IL-10 function blockade or KC depletion led to accelerated HBV clearance in LPS-treated HBV-replicating mice. CONCLUSIONS: Our results suggest that dysbiosis of the gut microbiota in mice leads to endotoxemia, which induces KC IL-10 production and strengthens KC-mediated T cell suppression, and thus facilitates HBV persistence.

20.
Nat Immunol ; 23(2): 251-261, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35102343

RESUMO

Tumor necrosis factor (TNF) drives chronic inflammation and cell death in the intestine, and blocking TNF is a therapeutic approach in inflammatory bowel disease (IBD). Despite this knowledge, the pathways that protect the intestine from TNF are incompletely understood. Here we demonstrate that group 3 innate lymphoid cells (ILC3s) protect the intestinal epithelium from TNF-induced cell death. This occurs independent of interleukin-22 (IL-22), and we identify that ILC3s are a dominant source of heparin-binding epidermal growth factor-like growth factor (HB-EGF). ILC3s produce HB-EGF in response to prostaglandin E2 (PGE2) and engagement of the EP2 receptor. Mice lacking ILC3-derived HB-EGF exhibit increased susceptibility to TNF-mediated epithelial cell death and experimental intestinal inflammation. Finally, human ILC3s produce HB-EGF and are reduced from the inflamed intestine. These results define an essential role for ILC3-derived HB-EGF in protecting the intestine from TNF and indicate that disruption of this pathway contributes to IBD.


Assuntos
Fator de Crescimento Semelhante a EGF de Ligação à Heparina/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA