Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
1.
DNA Cell Biol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853745

RESUMO

Patients with colorectal cancer (CRC) and diabetes share many risk factors. Despite a strong association between diabetes and CRC being widely studied and confirmed, further genetic research is needed. This study found higher AL049796.1 and TEA domain transcription factor 1 (TEAD1) levels (both mRNA and protein) in CRC tissues of diabetic patients compared with nondiabetics, but no significant difference in miR-200b-3p levels. A positive correlation between AL049796.1 and TEAD1 protein existed regardless of diabetes status, whereas miR-200b-3p was only negatively correlated with TEAD1 protein in nondiabetic CRC tissues. In vitro experiments have shown that high glucose (HG) treatment increased AL049796.1 in CRC cells, and AL049796.1 silencing reduced HG-induced proliferation, migration and invasion, as well as connective tissue growth factor, cysteine-rich angiogenic inducer 61, and epidermal growth factor receptor protein expression. Mechanistic investigations indicated that AL049796.1 could mitigate suppression of miR-200b-3p on TEAD1 posttranscriptionally by acting as a competitive binder. In vivo, subcutaneous CRC tumors in streptozotocin (STZ)-induced mice grew significantly faster; AL049796.1 silencing did not affect the growth of subcutaneous CRC tumors but significantly reduced that of STZ-induced mice. Our study suggests that AL049796.1 independently contributes to the risk of CRC in diabetic patients, highlighting its potential as both a therapeutic target and a novel biomarker for CRC among individuals with diabetes.

2.
Polymers (Basel) ; 16(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732763

RESUMO

Using biodegradable films as a substitute for conventional polyolefin films has emerged as a crucial technology to combat agricultural white pollution. To address the shortcomings in the tensile strength, water vapor barrier properties, and degradation period of PBAT-based biodegradable films, this investigation aimed to create a composite film that could improve the diverse properties of PBAT films. To achieve this, a PBAT/PLA-PPC-PTLA ternary blend system was introduced in the study. The system effectively fused PBAT with PLA and PPC, as evidenced by electron microscopy tests showing no apparent defects on the surface and cross-section of the blended film. The developed ternary blend system resulted in a 58.62% improvement in tensile strength, a 70.33% enhancement in water vapor barrier properties, and a 30-day extension of the functional period compared to pure PBAT biodegradable films. Field experiments on corn crops demonstrated that the modified biodegradable film is more suitable for agricultural production, as it improved thermal insulation and moisture retention, leading to a 5.45% increase in corn yield, approaching the yield of traditional polyolefin films.

3.
BMC Gastroenterol ; 24(1): 171, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760704

RESUMO

BACKGROUND: Numerous researches have indicated a correlation between the intake of dietary micronutrients and the occurrence of constipation. Nevertheless, the correlation between constipation and vitamin B1 remains uninvestigated. The main aim of this research was to examine the association between chronic constipation and the consumption of vitamin B1 in the diet among adult participants of the National Health and Nutrition Examination Survey (NHANES). METHODS: This study used data from the NHANES, a survey on health and nutrition conducted between 2005 and 2010. The respondents' dietary information was gathered by utilizing the 24-hour dietary records. Various statistical analyses, such as multiple logistic regression, subgroup analysis, and curve-fitting analysis, were employed to investigate the correlation between dietary intake of vitamin B1 and chronic constipation. RESULTS: In the trial, there were 10,371 participants, out of which 1,123 individuals (10.8%) were identified as having chronic constipation. Fully adjusted multiple logistic regression analyses showed that increasing dietary intake of vitamin B1 (OR = 0.87, 95% CI: 0.77-0.99) was significantly associated with a reduced risk of constipation. Following adjustment for multiple variables in Model 3, the odds ratio (OR) and 95% confidence interval (CI) for the third tertile, in comparison to the first tertile (reference group), was 0.80 (0.65, 0.99). In addition, subgroup analyses and interaction tests showed a significant inverse association between vitamin B1 intake and the prevalence of constipation, especially among men, non-hypertensive, and non-diabetic individuals (all P-values less than 0.05). CONCLUSION: This research uncovered an inverse correlation between the consumption of vitamin B1 in the diet and the occurrence of chronic constipation. One potential explanation for this phenomenon is that the consumption of vitamin B1 in one's diet is linked to the softening of stools and an augmented occurrence of colonic peristalsis. Additional extensive prospective research is required to thoroughly examine the significance of thiamine in long-term constipation.


Assuntos
Constipação Intestinal , Dieta , Inquéritos Nutricionais , Tiamina , Humanos , Constipação Intestinal/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Tiamina/administração & dosagem , Doença Crônica , Modelos Logísticos , Idoso , Complexo Vitamínico B/administração & dosagem
4.
Chin Med J (Engl) ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38809089

RESUMO

BACKGROUND: The main cause of restenosis after percutaneous transluminal angioplasty (PTA) is the excessive proliferation and migration of vascular smooth muscle cells (VSMCs). Lin28a has been reported to play critical regulatory roles in this process. However, whether CCAAT/enhancer-binding proteins ß (C/EBPß) binds to the Lin28a promoter and drives the progression of restenosis has not been clarified. Therefore, in the present study, we aim to clarify the role of C/EBPß-Lin28a axis in restenosis. METHODS: Restenosis and atherosclerosis rat models of type 2 diabetes (n  =  20, for each group) were established by subjecting to PTA. Subsequently, the difference in DNA methylation status and expression of C/EBPß between the two groups were assessed. EdU, Transwell, and rescue assays were performed to assess the effect of C/EBPß on the proliferation and migration of VSMCs. DNA methylation status was further assessed using Methyltarget sequencing. The interaction between Lin28a and ten-eleven translocation 1 (TET1) was analysed using co-immunoprecipitation (Co-IP) assay. Student's t-test and one-way analysis of variance were used for statistical analysis. RESULTS: C/EBPß expression was upregulated and accompanied by hypomethylation of its promoter in restenosis when compared with atherosclerosis. In vitroC/EBPß overexpression facilitated the proliferation and migration of VSMCs and was associated with increased Lin28a expression. Conversely, C/EBPß knockdown resulted in the opposite effects. Chromatin immunoprecipitation assays further demonstrated that C/EBPß could directly bind to Lin28a promoter. Increased C/EBPß expression and enhanced proliferation and migration of VSMCs were observed after decitabine treatment. Further, mechanical stretch promoted C/EBPß and Lin28a expression accompanied by C/EBPß hypomethylation. Additionally, Lin28a overexpression reduced C/EBPß methylation via recruiting TET1 and enhanced C/EBPß-mediated proliferation and migration of VSMCs. The opposite was noted in Lin28a knockdown cells. CONCLUSION: Our findings suggest that the C/EBPß-Lin28a axis is a driver of restenosis progression, and presents a promising therapeutic target for restenosis.

5.
AIDS ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819818

RESUMO

OBJECTIVE: Natural hosts of simian immunodeficiency virus (SIV), such as the African green monkey (AGM), possess the ability to avoid acquired immune deficiency syndrome (AIDS) despite lifelong infection. The underlying mechanisms are not completely understood. This study aimed to characterize the gut microbiome and metabolite profiles of different nonhuman primates (NHPs) to provide potential insight into AIDS resistance. DESIGN AND METHODS: Fresh feces from Cynomolgus macaques (CMs), and Rhesus macaques (RMs), SIV- AGMs (AGM_N), and SIV+ AGMs (AGM_P) were collected and used for metagenomic sequencing and metabonomic analysis. RESULTS: Compared with CMs and RMs, significant decreases in the abundances of Streptococcus, Alistipes, Treponema, Bacteroides, and Methanobrevibacter (P < 0.01), and significant increases in the abundances of Clostridium, Eubacterium, Blautia, Roseburia, Faecalibacterium, and Dialister (P < 0.01) were detected in AGM_N. Compared with AGM_N, a trend toward increased abundances of Streptococcus and Roseburia were found in AGM_P. The levels of metabolites involved in lipid metabolism and butanoate metabolism significantly differed among AGM_P, AGM_N and CM (P < 0.05). CONCLUSIONS: Our data, for the first time, demonstrated distinguishing features in the abundances of butyrate-producing bacteria and lipid metabolism capacities between different NHP hosts of SIV infection. These findings may correlate with the different characteristics observed among these hosts in the maintenance of intestinal epithelial barrier integrity, regulation of inflammation, and provide insights into AIDS resistance in AGMs.

6.
Adv Healthc Mater ; : e2400922, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38800965

RESUMO

Therapies for wound infections require medications with antibacterial and wound-healing functions. However, it remains a challenge to produce a single drug that can perform dual functions. Nitric oxide (NO), with its antibacterial and wound-healing activities, is an ideal solution to address this challenge. However, many controlled-release strategies for NO rely on external probes for tracing the release in situ, making it difficult to precisely assess the location and magnitude. To address this issue, this study describes a novel NO donor, DHU-NO1, capable of efficiently releasing NO under mild conditions (450 nm illumination). Simultaneously, DHU-NO1 generates the fluorophore Azure B (AZB), which enables direct, non-consumptive tracing of the NO release by monitoring the fluorescence and absorption changes in AZB. Given that NO can be conveniently traced, the amount of released NO can be controlled during biological applications, thereby allowing both functions of NO to be performed. When applied to the affected area, DHU-NO1, illuminated by both a simple light-emitting diode (LED) light source and natural light, achieves significant antibacterial effects against wound infections and promotes wound healing in mice. This study offers a novel and effective approach for treating wound infections.

7.
PLoS One ; 19(4): e0298194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625916

RESUMO

INTRODUCTION: Paeonia lactiflora contains diverse active constituents and exhibits various pharmacological activities. However, only partial identification of biologically active substances from P. lactiflora has been achieved using low-throughput techniques. Here, the roots of P. lactiflora, namely, Fenyunu (CK), Dafugui (DFG), and Red Charm (HSML), were studied. The primary and secondary metabolites were investigated using ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESIMS/MS). METHODS: The chemical compounds and categories were detected using broadly targeted UPLC-MS/MS. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and hierarchical clustering analysis (HCA) were carried out for metabolites of different varieties of P. lactiflora. RESULTS: A total of 1237 compounds were detected and classified into 11 categories. HCA, PCA, and OPLS-DA of these metabolites indicated that each variety of P. lactiflora was clearly separated from the other groups. Differential accumulated metabolite analysis revealed that the three P. lactiflora varieties contained 116 differentially activated metabolites (DAMs) involved in flavonoid, flavone, and flavonol metabolism. KEGG pathway analysis revealed that, in 65 pathways, 336 differentially abundant metabolites (DMs) were enriched in the CK and DFG groups; moreover, the type and content of terpenoids were greater in the CK group than in the DFG group. The CK and HSML groups contained 457 DMs enriched in 61 pathways; the type and amount of flavonoids, terpenoids, and tannins were greater in the CK group than in the HSML group. The DFG and HSML groups contained 497 DMs enriched in 65 pathways; terpenoids and alkaloids were more abundant in the HSML variety than in the DFG variety. CONCLUSIONS: A total of 1237 compounds were detected, and the results revealed significant differences among the three P. lactiflora varieties. Among the three P. lactiflora varieties, phenolic acids and flavonoids composed the largest and most diverse category of metabolites, and their contents varied greatly. Therefore, CK is suitable for medicinal plant varieties, and DFG and HSML are suitable for ornamental plant varieties. Twelve proanthocyanidin metabolites likely determined the differences in color among the three varieties.


Assuntos
Paeonia , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Flavonoides/química , Cromatografia Líquida de Alta Pressão/métodos , Terpenos/metabolismo
8.
Int J Biol Macromol ; 266(Pt 2): 131381, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580009

RESUMO

The biosynthetic route for flavonol in Camptotheca acuminata has been recently elucidated from a chemical point of view. However, the genes involved in flavonol methylation remain unclear. It is a critical step for fully uncovering the flavonol metabolism in this ancient plant. In this study, the multi-omics resource of this plant was utilized to perform flavonol O-methyltransferase-oriented mining and screening. Two genes, CaFOMT1 and CaFOMT2 are identified, and their recombinant CaFOMT proteins are purified to homogeneity. CaFOMT1 exhibits strict substrate and catalytic position specificity for quercetin, and selectively methylates only the 4'-OH group. CaFOMT2 possesses sequential O-methyltransferase activity for the 4'-OH and 7-OH of quercetin. These CaFOMT genes are enriched in the leaf and root tissues. The catalytic dyad and critical substrate-binding sites of the CaFOMTs are determined by molecular docking and further verified through site-mutation experiments. PHE181 and MET185 are designated as the critical sites for flavonol substrate selectivity. Genomic environment analysis indicates that CaFOMTs evolved independently and that their ancestral genes are different from that of the known Ca10OMT. This study provides molecular insights into the substrate-binding pockets of two new CaFOMTs responsible for flavonol metabolism in C. acuminata.


Assuntos
Camptotheca , Metiltransferases , Simulação de Acoplamento Molecular , Especificidade por Substrato , Camptotheca/enzimologia , Camptotheca/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/química , Flavonóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Filogenia , Metilação , Sequência de Aminoácidos
9.
Appl Opt ; 63(8): 1995-2003, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568640

RESUMO

For gravitational wave detection, the telescope is required to have an ultra-low wavefront error and ultra-high signal-to-noise ratio, where the power of the stray light should be controlled on the order of less than 10-10. In this work, we propose an alternative stray light suppression method for the optical design of an off-axis telescope with four mirrors by carefully considering the optimal optical paths. The method includes three steps. First, in the period of the optical design, the stray light caused by the tertiary mirror and the quaternary mirror is suppressed by increasing the angle formed by the optical axes of the tertiary mirror and the quaternary mirror and reducing the radius of curvature of the quaternary mirror as much as possible to make sure the optical system provides a beam quality with a wavefront error less than λ/80. Next, the stray light could satisfy the requirement of the order of 10-10 when the level of roughness reaches 0.2 nm, and the pollution of mirrors is controlled at the level of CL100. Finally, traditional stray light suppression methods should also be applied to mechanics, including the use of the optical barrier, baffle tube, and black paint. It can be seen that the field stop can efficiently reduce stray light caused by the secondary mirror by more than 55% in the full field of view. The baffle tube mounted on the position of the exit pupil can reduce the overall stray light energy by 5%, and the difference between the ideal absorber (absorption coefficient is 100%) and the actual black paint (absorption coefficient is 90%) is 3.2%. These simulation results are confirmed by the Monte Carlo method for a stray light analysis. Based on the above results, one can conclude that the geometry structure of the optical design, the quality of mirrors, and the light barrier can greatly improve the stray light suppression ability of the optical system, which is vital when developing a gravitational wave telescope with ultra-low stray light energy.

10.
Mucosal Immunol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614323

RESUMO

Excessive inflammatory responses are the main characteristic of ulcerative colitis (UC). Activation of formyl peptide receptor 1 (FPR1) has been found to promote the proliferation and migration of epithelial cells, but its role and therapeutic potential in UC remain unclear. This study observed an increased expression of FPR1 in a mouse model of colitis. Interestingly, FPR1 deficiency exacerbated UC and increased the secretion of the proinflammatory mediator from immune cells (e.g. macrophages), S100a8, a member of the damage-associated molecular patterns. Notably, the administration of the FPR agonist Cmpd43 ameliorated colon injury in a preclinical mice model of UC, likely via inhibiting phosphorylation of cyclic adenosine monophosphate-response element-binding protein and expression of CCAAT/enhancer-binding protein ß, which in turn suppressed the secretion of S100a8. In conclusion, these findings discovered a novel role of FPR1 in the development of colitis and will facilitate the development of FPR1-based pharmacotherapy to treat UC.

11.
Biomater Sci ; 12(8): 2167, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38517143

RESUMO

Retraction of 'Strontium-doped gelatin scaffolds promote M2 macrophage switch and angiogenesis through modulating the polarization of neutrophils' by Tao Li et al., Biomater. Sci., 2021, 9, 2931-2946, https://doi.org/10.1039/D0BM02126A.

12.
J Hazard Mater ; 469: 133945, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447372

RESUMO

Porous fabrics have a significant impact on indoor air quality by adsorbing and emitting chemical substances, such as volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). Understanding the partition behavior between organic compound molecules and indoor fabrics is crucial for assessing their environmental fate and associated human exposure. The physicochemical properties of fabrics and compounds are fundamental in determining the free energy of partitioning. Moreover, environmental factors like temperature and humidity critically affect the partition process by modifying the thermal and moisture conditions of the fabric. However, existing methods for determining the fabric-air partition coefficient are limited to specific fabric-chemical combinations and lack a comprehensive consideration of indoor environmental factors. In this study, large amounts of experimental data on fabric-air partition coefficients (Kfa) of (S)VOCs were collected for silk, polyester, and cotton fabrics. Key molecular descriptors were identified, integrating the influences of physicochemical properties, temperature, and humidity. Subsequently, two typical quantitative structure-property relationship (QSPR) models were developed to correlate the Kfa values with the molecular descriptors. The fitting performance, robustness, and predictive ability of the two QSPR models were evaluated through statistical analysis and internal/external validation. This research provides insights for the high-throughput prediction of the environmental behaviors of indoor organic compounds.

13.
Bioact Mater ; 37: 119-131, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38549773

RESUMO

In situ monitoring of bone regeneration enables timely diagnosis and intervention by acquiring vital biological parameters. However, an existing gap exists in the availability of effective methodologies for continuous and dynamic monitoring of the bone tissue regeneration process, encompassing the concurrent visualization of bone formation and implant degradation. Here, we present an integrated scaffold designed to facilitate real-time monitoring of both bone formation and implant degradation during the repair of bone defects. Laponite (Lap), CyP-loaded mesoporous silica (CyP@MSNs) and ultrasmall superparamagnetic iron oxide nanoparticles (USPIO@SiO2) were incorporated into a bioink containing bone marrow mesenchymal stem cells (BMSCs) to fabricate functional scaffolds denoted as C@M/GLU using 3D bioprinting technology. In both in vivo and in vitro experiments, the composite scaffold has demonstrated a significant enhancement of bone regeneration through the controlled release of silicon (Si) and magnesium (Mg) ions. Employing near-infrared fluorescence (NIR-FL) imaging, the composite scaffold facilitates the monitoring of alkaline phosphate (ALP) expression, providing an accurate reflection of the scaffold's initial osteogenic activity. Meanwhile, the degradation of scaffolds was monitored by tracking the changes in the magnetic resonance (MR) signals at various time points. These findings indicate that the designed scaffold holds potential as an in situ bone implant for combined visualization of osteogenesis and implant degradation throughout the bone repair process.

14.
Am J Surg Pathol ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501656

RESUMO

ABSTRACT: Renal hemangioblastoma (HB) is a rare subset of HBs arising outside of the central nervous system (CNS), with its molecular drivers remaining entirely unknown. There were no significant alterations detected in previous studies, including von Hippel-Lindau gene alterations, which are commonly associated with CNS-HB. This study aimed to determine the real molecular identity of renal HB and better understand its relationship with CNS-HB. A cohort of 10 renal HBs was submitted for next-generation sequencing technology. As a control, 5 classic CNS-HBs were similarly analyzed. Based on the molecular results, glycoprotein nonmetastatic B (GPNMB) immunohistochemistry was further performed in the cases of renal HB and CNS-HB. Mutational analysis demonstrated that all 10 renal HBs harbored somatic mutations in tuberous sclerosis complex 1 (TSC1, 5 cases), TSC2 (3 cases), and mammalian target of rapamycin (2 cases), with the majority classified as pathogenic or likely pathogenic. The CNS-HB cohort uniformly demonstrated somatic mutations in the von Hippel-Lindau gene. GPNMB was strong and diffuse in all 10 renal HBs and completely negative in CNS-HBs, reinforcing the molecular findings. Our study reveals a specific molecular hallmark in renal HB, characterized by recurrent TSC/mammalian target of rapamycin mutations, which defines it as a unique entity distinct from CNS-HB. This molecular finding potentially expands the therapeutic options for patients with renal HB. GPNMB can be considered for inclusion in immunohistochemical panels to improve renal HB identification.

15.
Heliyon ; 10(2): e24906, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312545

RESUMO

Objective: Osteoporosis is a common clinical bone disease that occurs most frequently in middle-aged and elderly people. Various traditional herbal medicine formulations have shown significant benefits in models of osteoporosis. In this study, we aim to investigate the osteogenic efficacy of naringin (NRG) in the osteoporotic state. Design: We treated Bone marrow stromal cells (BMSCs) with various concentrations of NRG for 3 and 7 days. BMSC proliferation was measured by the MTT assay. The effect of NRG on the osteogenic differentiation of BMSCs was detected by ALP and alizarin red staining. The effect of NRG on the BMP2/Runx2/Osterix signaling pathway was analyzed by using real-time PCR. The effect of NRG on the oestrogen receptor was measured by Enzyme-linked immunosorbent assay. In vivo animal experiments were performed by micro-computed tomography and ALP immunohistochemistry to determine the ectopic osteogenic effect of NRG sustained-release nanoparticles in a mouse model of osteoporosis. Results: NRG promoted the proliferation and osteogenic differentiation of BMSCs. Moreover, it also activated the BMP2/Runx2/Osterix signaling pathway. When NRG sustained-release nanoparticles were added in vivo in animal experiments, we found that NRG sustained-release nanoparticles had better ectopic osteogenic effects in a mouse model of osteoporosis. Conclusions: NRG induced osteoblastic differentiation of BMSCs by activating the BMP2/Runx2/Osterix signaling pathway and promoted the regulation of oestrogen receptor pathway protein expression, and NRG sustained-release nanoparticles exerted a more significant in vivo ectopic osteogenic effect in an osteoporosis mouse model. Therefore, naringin is expected to be developed as a novel treatment for inducing osteogenesis, because of its ubiquitous, cost-efficient, and biologically active characteristics. However, further research is needed on how to improve the pharmacokinetic properties of naringin and its specific mechanism.

16.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38310472

RESUMO

Proton exchange reactions are of key importance in many processes in water. However, it is nontrivial to achieve reliable barrier heights for multiple proton exchanges and complexation energies in hydrogen-bonded systems theoretically. Performance of the fixed-node diffusion quantum Monte Carlo (FN-DMC) with the single-Slater-Jastrow trial wavefunction on total energies, barrier heights of multiple proton exchanges, and complexation energies of small water, ammonia, and hydrogen fluoride clusters is investigated in this study. Effects of basis sets and those of locality approximation (LA), T-move approximation (T-move), and determinant localization approximation (DLA) schemes in dealing with the nonlocal part of pseudopotentials on FN-DMC results are evaluated. According to our results, diffuse basis functions are important in achieving reliable barrier heights and complexation energies with FN-DMC, although the cardinal number of the basis set is more important than diffuse basis functions on total energies of these systems. Our results also show that the time step bias with DLA and LA is smaller than T-move; however, the time step bias of DMC energies with respect to time steps using the T-move is roughly linear up to 0.06 a.u., while this is not the case with LA and DLA. Barrier heights and complexation energies with FN-DMC using these three schemes are always within chemical accuracy. Taking into account the fact that T-move and DLA are typically more stable than LA, FN-DMC calculations with the T-move or DLA scheme and basis sets containing diffuse basis functions are suggested for barrier heights of multiple proton exchanges and complexation energies of hydrogen-bonded clusters.

17.
Nurse Educ Today ; 134: 106095, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266431

RESUMO

BACKGROUND: With the rising number of people with end-stage chronic diseases, the demand for hospice care has increased dramatically. As the future health professionals for the implementation of hospice care, undergraduate nursing students in mainland China still lack knowledge and skills of hospice care, thus hospice care education plays a vital role in its development. OBJECTIVES: To understand the effects of hospice care education on nursing students' death attitudes, end-of-life attitudes, humanistic care qualities, and their learning experiences. DESIGN: This study used a mixed-methods design. SETTING: A University of Chinese Medicine in mainland China. PARTICIPANTS: The first-year undergraduate nursing students (n = 65). METHODS: A mixed-methods study was conducted to evaluate the impact of a hospice care course from March to June 2021. The quantitative part included a quasi-experimental study designed with pre- and post-intervention measurements and the qualitative part included a descriptive qualitative study with semi-structured individual interviews. RESULTS: The quantitative data revealed that after the course, nursing students experienced improvements in their death attitudes, end-of-life attitudes, and humanistic care qualities. Two categories were identified from the qualitative data. The category of "Gain from learning" included 4 themes (Confronting death and thinking about life; Understanding and agreeing with the idea of hospice care; Perceiving the humanistic spirit of medicine; Enhancing of the nursing discipline cognition and professional identity) and the category of "Course feedback" included 2 themes (Expressing recognition for the course arrangement; Making suggestions on the course optimization). CONCLUSIONS: Hospice care education had a positive influence on nursing students. Students expressed satisfaction with the course arrangement. However, future hospice care courses should further optimize the curriculum designs by increasing the discussion of death-related topics, sharing more real clinical cases, recruiting students from different majors, and providing clinical practice, to provide high-quality nursing education for the development of hospice care.


Assuntos
Bacharelado em Enfermagem , Educação em Enfermagem , Cuidados Paliativos na Terminalidade da Vida , Estudantes de Enfermagem , Humanos , Bacharelado em Enfermagem/métodos , Morte
18.
Adv Healthc Mater ; 13(6): e2302687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940192

RESUMO

In situ monitoring of bone tissue regeneration progression is critical for the development of bone tissue engineering scaffold. However, engineered scaffolds that can stimulate osteogenic progress and allow for non-invasive monitoring of in vivo bone regeneration simultaneously are rarely reported. Based on a hard-and-soft integration strategy, a multifunctional scaffold composed of 3D printed microfilaments and a hydrogel network containing simvastatin (SV), indocyanine green-loaded superamphiphiles, and aminated ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NH2 ) is fabricated. Both in vitro and in vivo results demonstrate that the as-prepared scaffold significantly promotes osteogenesis through controlled SV release. The biocomposite scaffold exhibits alkaline phosphatase-responsive near-infrared II fluorescence imaging. Meanwhile, USPIO-NH2 within the co-crosslinked nanocomposite network enables the visualization of scaffold degradation by magnetic resonance imaging. Therefore, the biocomposite scaffold enables or facilitates non-invasive in situ monitoring of neo-bone formation and scaffold degradation processes following osteogenic stimulation, offering a promising strategy to develop theranostic scaffolds for tissue engineering.


Assuntos
Osso e Ossos , Procedimentos de Cirurgia Plástica , Imageamento por Ressonância Magnética , Osteogênese , Fosfatase Alcalina
19.
Braz J Otorhinolaryngol ; 90(1): 101343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37925811

RESUMO

OBJECTIVES: Nasopharyngeal Carcinoma (NPC) is a common malignant tumor of nasopharyngeal mucosal epithelium in clinical practice. Radiotherapy and chemotherapy are the main treatment methods at present, but the therapeutic effect is still unsatisfactory. Studies have shown that exosomes and microRNAs (miRNAs) play an important role in the development of cancer. Therefore, this study aimed to investigate the effects of NPC derived exosomes on NPC and their molecular mechanisms. METHODS: Serum was collected from healthy subjects, Epstein-Barr Virus (EBV) infected patients and NPC patients (n = 9 group) and exosomes were extracted separately. High-throughput sequencing of exosomes was performed to screen differentially expressed miRNAs. The function of the screened miRNA was identified by treating NPC cells with exosomes. The target gene of miRNA was identified using the dual-luciferase assay. Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) was used to determine the levels of miR-99a-5p and Bromodomain Adjacent Tozinc finger domain protein 2A (BAZ2A). Cell Counting Kit-8 assay, flow cytometry, and wound healing assay were utilized to detect cell viability, cell cycle and apoptosis, and migration ability. The protein levels were evaluated by Western blot. RESULTS: MiR-99a-5p was identified as the most significant differentially expressed miRNA in exosomes (p < 0.05). The proliferation and migration of NPC cells were extremely facilitated by exosomes, accompanied by the suppressed apoptosis, upregulated BAZ2A, Monocyte Chemotactic Protein-1 (MCP1), and Vascular Endothelial Growth Factor A (VEGFA), and downregulation of Interleukin (IL)-1ß and Nuclear Transcription Factor-κB (NF-κB) (p < 0.05). BAZ2A was a target gene of miR-99a-5p. Furthermore, the regulatory effect of exosomes on the proliferation, migration, and apoptosis was significantly abolished by overexpression of miR-99a-5p or downregulation of BAZ2A (p < 0.05). CONCLUSION: NPC derived exosomes facilitated the proliferation and migration of NPC through regulating the miR-99a-5p/BAZ2A axis.


Assuntos
Infecções por Vírus Epstein-Barr , Exossomos , MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Infecções por Vírus Epstein-Barr/genética , Linhagem Celular Tumoral , Proliferação de Células , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas que Contêm Bromodomínio , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-37632228

RESUMO

In the last decades, near-infrared (NIR) light has attracted considerable attention due to its unique properties and numerous potential applications in bioimaging and disease treatment. Bone tissue engineering for bone regeneration with the help of biomaterials is currently an effective means of treating bone defects. As a controlled light source with deeper tissue penetration, NIR light can provide real-time feedback of key information on bone regeneration in vivo utilizing fluorescence imaging and be used for bone disease treatment. This review provides a comprehensive overview of NIR light-facilitated bone tissue engineering, from the introduction of NIR probes as well as NIR light-responsive materials, and the visualization of bone regeneration to the treatment of bone-related diseases. Furthermore, the existing challenges and future development directions of NIR light-based bone tissue engineering are also discussed. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Engenharia Tecidual/métodos , Próteses e Implantes , Nanotecnologia , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA