Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Zhejiang Univ Sci B ; 25(3): 254-270, 2024 Mar 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38453639

RESUMO

As a potential vectored vaccine, Newcastle disease virus (NDV) has been subject to various studies for vaccine development, while relatively little research has outlined the immunomodulatory effect of the virus in antigen presentation. To elucidate the key inhibitory factor in regulating the interaction of infected dendritic cells (DCs) and T cells, DCs were pretreated with the NDV vaccine strain LaSota as an inhibitor and stimulated with lipopolysaccharide (LPS) for further detection by enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunoblotting, and quantitative real-time polymerase chain reaction (qRT-PCR). The results revealed that NDV infection resulted in the inhibition of interleukin (IL)-12p40 in DCs through a p38 mitogen-activated protein kinase (MAPK)|-dependent manner, thus inhibiting the synthesis of IL-12p70, leading to the reduction in T cell proliferation and the secretion of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and IL-6 induced by DCs. Consequently, downregulated cytokines accelerated the infection and viral transmission from DCs to T cells. Furthermore, several other strains of NDV also exhibited inhibitory activity. The current study reveals that NDV can modulate the intensity of the innate|‒|adaptive immune cell crosstalk critically toward viral invasion improvement, highlighting a novel mechanism of virus-induced immunosuppression and providing new perspectives on the improvement of NDV-vectored vaccine.


Assuntos
Vírus da Doença de Newcastle , Vacinas , Animais , Vírus da Doença de Newcastle/fisiologia , Interleucina-12/farmacologia , Apresentação de Antígeno , Vacinas/farmacologia , Células Dendríticas
2.
Thromb Res ; 237: 1-13, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513536

RESUMO

BACKGROUND: Sepsis is a common and critical condition encountered in clinical practice that can lead to multi-organ dysfunction. Sepsis-induced coagulopathy (SIC) significantly affects patient outcomes. However, the precise mechanisms remain unclear, making the identification of effective prognostic and therapeutic targets imperative. METHODS: The analysis of transcriptome data from the whole blood of sepsis patients, facilitated the identification of key genes implicated in coagulation. Then we developed a prognostic model and a nomogram to predict patient survival. Consensus clustering classified sepsis patients into three subgroups for comparative analysis of immune function and immune cell infiltration. Single-cell sequencing elucidated alterations in intercellular communication between platelets and immune cells in sepsis, as well as the role of the coagulation-related gene FYN. Real-time quantitative PCR determined the mRNA levels of critical coagulation genes in septic rats' blood. Finally, administration of a FYN agonist to septic rats was observed for its effects on coagulation functions and survival. RESULTS: This study identified four pivotal genes-CFD, FYN, ITGAM, and VSIG4-as significant predictors of survival in patients with sepsis. Among them, CFD, FYN, and ITGAM were underexpressed, while VSIG4 was upregulated in patients with sepsis. Moreover, a nomogram that incorporates the coagulation-related genes (CoRGs) risk score with clinical features of patients accurately predicted survival probabilities. Subgroup analysis of CoRGs expression delineated three molecular sepsis subtypes, each with distinct prognoses and immune profiles. Single-cell sequencing shed light on heightened communication between platelets and monocytes, T cells, and plasmacytoid dendritic cells, alongside reduced interactions with neutrophils in sepsis. The collagen signaling pathway was found to be essential in this dynamic. FYN may affect platelet function by modulating factors such as ELF1, PTCRA, and RASGRP2. The administration of the FYN agonist can effectively improve coagulation dysfunction and survival in septic rats. CONCLUSIONS: The research identifies CoRGs as crucial prognostic markers for sepsis, highlighting the FYN gene's central role in coagulation disorders associated with the condition and suggesting novel therapeutic intervention strategies.


Assuntos
Sepse , Sepse/complicações , Sepse/sangue , Humanos , Ratos , Animais , Prognóstico , Masculino , Transtornos da Coagulação Sanguínea/genética , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/etiologia , Feminino , Ratos Sprague-Dawley
3.
Mol Neurobiol ; 61(3): 1331-1345, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37700217

RESUMO

    Although multiple factors are known to concur with Alzheimer's disease (AD), the relationship between human cytomegalovirus (HCMV) and AD-like disease is unclear. Here, we propose a hypothesis that HCMV immediate-early 2 (IE2) protein promotes microglia activation and thus leads to AD-like disease. We successfully constructed IE2 transgenic mice expressing IE2 in the hippocampus. Single-cell sequencing analysis revealed that IE2 promoted the activation of microglia and upregulated the expression of disease-associated microglia genes. Differentially expressed gene analysis and pathway enrichment revealed that IE2 upregulated immune and nervous system disease-related genes. Immunohistochemical analysis showed that the expressions of both amyloid precursor protein (APP) and p-Tau were significantly upregulated in the brains of IE2 mice and were markers of AD. Taken together, these findings provide useful insights into AD-like disease activated by HCMV IE2.


Assuntos
Doença de Alzheimer , Proteínas Imediatamente Precoces , Humanos , Camundongos , Animais , Camundongos Transgênicos , Microglia/metabolismo , Doença de Alzheimer/genética , Transativadores/metabolismo , Citomegalovirus , Perfilação da Expressão Gênica , Análise de Sequência de RNA
4.
Biol Direct ; 18(1): 85, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071369

RESUMO

INTRODUCTION: Inflammation and nerve injury promote astrocyte activation, which regulates the development and resolution of pain, in the spinal dorsal horn. APOE regulates lipid metabolism and is predominantly expressed in the astrocytes. However, the effect of astrocytic APOE and lipid metabolism on spinal cellular function is unclear. This study aimed to investigate the effect of spinal Apoe on spinal cellular functions using the complete Freund's adjuvant (CFA)-induced inflammatory pain mouse model. METHODS: After intraplantar injection of CFA, we assessed pain behaviors in C57BL6 and Apoe knockout (Apoe-/-) mice using von Frey and Hargreaves' tests and analyzed dorsal horn samples (L4-5) using western blotting, immunofluorescence, quantitative real-time polymerase chain reaction, and RNA sequencing. RESULTS: The Apoe levels were markedly upregulated at 2 h and on days 1 and 3 post-CFA treatment. Apoe was exclusively expressed in the astrocytes. Apoe-/- mice exhibited decreased pain on day 1, but not at 2 h, post-CFA treatment. Apoe-/- mice also showed decreased spinal neuron excitability and paw edema on day 1 post-CFA treatment. Global transcriptomic analysis of the dorsal horn on day 1 post-CFA treatment revealed that the differentially expressed mRNAs in Apoe-/- mice were associated with lipid metabolism and the immune system. Astrocyte activation was impaired in Apoe-/- mice on day 1 post-CFA treatment. The intrathecal injection of Apoe antisense oligonucleotide mitigated CFA-induced pain hypersensitivity. CONCLUSIONS: Apoe deficiency altered lipid metabolism in astrocytes, exerting regulatory effects on immune response, astrocyte activation, and neuronal activity and consequently disrupting the maintenance of inflammatory pain after peripheral inflammation. Targeting APOE is a potential anti-nociception and anti-inflammatory strategy.


Assuntos
Apolipoproteínas E , Hiperalgesia , Metabolismo dos Lipídeos , Dor , Animais , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Adjuvante de Freund/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Inflamação , Dor/induzido quimicamente , Dor/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Camundongos Knockout para ApoE
5.
Life Sci ; 332: 122088, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730112

RESUMO

AIMS: Epigenetic regulation is implicated in the neurogenesis of neuropathic pain. The repressor element 1 (RE1) silencing transcription factor (REST) corepressor (CoREST) proteins function as corepressors in the REST complex and/or LSD1 epigenetic complex. In the current study, we aimed to find the expression profile of CoREST1 in the dorsal root ganglion (DRG) and investigate whether it plays a role in neuropathic pain. MAIN METHODS: The evoked pain behaviors in mice were examined by the von Frey test and thermal test in a spinal nerve ligation (SNL)-induced neuropathic pain mice model. CoREST1 siRNA or virus was administered by DRG microinjection or intrathecal injection. The CoREST1 expression in DRGs was examined by immunofluorescence, quantitative PCR, Western blotting, and co-immunoprecipitation. KEY FINDINGS: CoREST1 was non-selectively expressed in large, medium, and small DRG neurons, and it exclusively colocalized with LSD1. In neuropathic pain models, peripheral nerve injury induced the upregulation of CoREST1 and increased binding of CoREST1 with LSD1 in injured DRGs in male mice. Furthermore, CoREST1 siRNA prevented the development of SNL-induced pain hypersensitivity as well as led to the reduction of established pain hypersensitivity during the maintenance period in SNL mice. Conversely, the overexpression of CoREST1 in DRGs by in vivo transfection of virus-induced pain hypersensitivity in naive mice. SIGNIFICANCE: Our study demonstrated that CoREST1, along with LSD1, was expressed in primary sensory neurons specifically in response to nerve injury, and promoted nociceptive pain hypersensitivity in mice. Thus, CoREST1 might serve as a potential target for treating neuropathic pain.

6.
Sci Rep ; 13(1): 6701, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095192

RESUMO

Metabolic diseases are often associated with high fructose (HF) consumption. HF has also been found to alter the gut microbiota, which then favors the development of nonalcoholic fatty liver disease. However, the mechanisms underlying of the gut microbiota on this metabolic disturbance are yet to be determined. Thus, in this study, we further explored the effect the gut microbiota concerning the T cells balance in an HF diet mouse model. We fed mice 60% fructose-enriched diet for 12 weeks. At 4 weeks, HF diet did not affect the liver, but it caused injury to the intestine and adipose tissues. After 12 weeks, the lipid droplet aggregation was markedly increased in the liver of HF-fed mice. Further analysis of the gut microbial composition showed that HF decreased the Bacteroidetes/Firmicutes ratio and increased the levels of Blautia, Lachnoclostridium, and Oscillibacter. In addition, HF can increase the expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in the serum. T helper type 1 cells were significantly increased, and regulatory T(Treg) cells were markedly decreased in the mesenteric lymph nodes of the HF-fed mice. Furthermore, fecal microbiota transplantation alleviates systemic metabolic disorder by maintaining liver and intestinal immune homeostasis. Overall, our data indicated that intestinal structure injury and intestinal inflammation might be early, and liver inflammation and hepatic steatosis may be a subsequent effect following HF diets. Gut microbiota disorders impairing the intestinal barrier function and triggering immune homeostasis imbalance may be an importantly responsible for long-term HF diets induced hepatic steatosis.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Frutose/metabolismo , Fígado/metabolismo , Dieta , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
7.
Mol Neurobiol ; 60(7): 3883-3897, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36991278

RESUMO

Human cytomegalovirus (HCMV) is a significant contributor to congenital birth defects. Limited by the lack of animal models, the pathogenesis of neurological damage in vivo caused by HCMV infection and the role of individual viral genes remain to be elucidated. Immediate early (IE2) protein may play a function in neurodevelopmental problems caused by HCMV infection. Here, this study intended to investigate IE2's long-term effects on development of the brain in IE2-expressing transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) aimed to observe the phenotype of postnatal mice. The expression of IE2 in transgenic mice was confirmed by PCR and Western blot technology. We collected mouse brain tissue at 2, 4, 6, 8, and 10 days postpartum to analyze the developmental process of neural stem cells by immunofluorescence. We discovered that transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) can reliably produce IE2 in the brain at various postpartum phases. Furthermore, we also observed the symptoms of microcephaly in postnatal transgenic mice, and IE2 can damage the amount of neural stem cells, prevent them from proliferating and differentiating, and activate microglia and astrocytes, creating an unbalanced environment in the brain's neurons. In conclusion, we demonstrate that long-term expression of HCMV-IE2 can cause microcephaly through molecular mechanisms affecting the differentiation and development of neural stem cells in vivo. This work establishes a theoretical and experimental foundation for elucidating the molecular mechanism of fetal microcephaly brought by HCMV infection in throughout the period of neural development of pregnancy.


Assuntos
Proteínas Imediatamente Precoces , Microcefalia , Gravidez , Feminino , Humanos , Camundongos , Animais , Citomegalovirus , Camundongos Transgênicos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Microcefalia/genética , Replicação Viral
8.
Virulence ; 14(1): 2169488, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36723437

RESUMO

Human cytomegalovirus (HCMV) infection is prevalent worldwide, and there is currently no licenced HCMV vaccine to control it. Therefore, developing an effective HCMV vaccine is a significant priority. Because of their excellent immunogenicity, the crucial components of HCMV, phosphoprotein 65 (pp65) and glycoproteins H (gH) are potential target proteins for HCMV vaccine design. In this study, we predicted and screened the dominant antigenic epitopes of B and T cells from pp65 and gH conjugated with the carrier protein cross-reacting material 197 (CRM197) to form three peptide-CRM197 vaccines (pp65-CRM197, gH-CRM197, and pp65-CRM197+gH-CRM197). Furthermore, the immunogenicity of the peptide-CRM197 vaccines and their effects on dendritic cells (DCs) were explored. The results showed that three peptide-CRM197 vaccines could induce maturation of DCs through the p38 MAPK signalling pathway and promote the release of proinflammatory factors, such as TNF-α and interleukin (IL) -6. Meanwhile, the peptide-CRM197 vaccines could effectively activate T cell and humoral immunity, which were far better than the inactivated HCMV vaccine. In conclusion, we constructed three peptide-CRM197 vaccines, which could induce multiple immune effects, providing a novel approach for HCMV vaccine design.


Assuntos
Vacinas contra Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/genética , Glicoproteínas , Peptídeos , Linfócitos T
9.
J Med Virol ; 95(2): e28554, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738232

RESUMO

Lung cancer is a fatal disease with the highest worldwide morbidity and mortality rates. Despite recent advances in targeted therapy and immune checkpoint inhibitors for cancer, their efficacy remained limited. Therefore, we designed a Newcastle disease virus (NDV)-modified tumor whole-cell vaccine as a therapeutic vaccine and identified its antigen presentation level to develop effective immunotherapy. Then, we calculated the therapeutic and immune-stimulating effects of NDV-modified lung cancer cell vaccine and intratumoral NDV injection combination on tumor-bearing mice. The results showed that the immunogenic cell death (ICD) expression in NDV-modified lung cancer cell vaccine stimulates dendritic cell maturation and T cell activation in vivo and in vitro. Moreover, NDV-modified lung cancer cell vaccine combined with intratumoral NDV injection could significantly inhibit tumor growth and enhance the differentiation of Th1 cells and Inflammatory cell infiltration in vivo, leading to an excellent immunotherapeutic effect. Therefore, our results revealed that NDV-modified lung cancer cell vaccine combined with intratumoral NDV injection could promote antigen presentation and induce a strong antitumor immune response, which provided a promising combined therapy strategy for tumor immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias Pulmonares , Animais , Camundongos , Vírus da Doença de Newcastle , Imunoterapia/métodos , Vacinas Anticâncer/metabolismo , Imunidade
10.
Int J Biol Macromol ; 224: 79-93, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252620

RESUMO

Human cytomegalovirus (HCMV) infection is a major cause of neonatal neurodevelopmental disorders and serious complications in organ transplantation. Previous HCMV vaccines focused on humoral immunity but had limited effect on viral infection. T-cell responses are essential to prevent HCMV infection, indicating that effective vaccines require T cells activation. In this study, we designed a novel polypeptides vaccine conjugated to a CRM197 carrier protein, encoding 15 CD8+ T-cell epitopes, five CD4+ T-cell epitopes, and four B-cell epitopes from gB287-320 and pp150311-325 of HCMV to induce T-cell immune responses. To evaluate the effectiveness of vaccines, we subsequently measured the expression of surface molecule markers and proinflammatory cytokines from antigen presenting cells in vivo and in vitro as well as the activation of T cells and antibodies. The results demonstrated that this polypeptide vaccine could activate innate immunity including up-regulating MHCI, II, CD80, CD86, and cytokine expression through the TLR4/NF-κB pathway. Meanwhile, vaccinations elicited potent neutralizing antibody and cellular immune responses producing TNF-α, INF-γ and IL-2, indicating Th1-biased polarization. This finding underlines that CRM197-conjugated polypeptide vaccines facilitate a synergism of humoral and cellular immunity, providing enhanced protection against HCMV, which could be a potential strategy to prevent CMV-associated diseases.


Assuntos
Vacinas contra Citomegalovirus , Vacinas , Recém-Nascido , Humanos , Citomegalovirus , Epitopos de Linfócito T , Anticorpos Antivirais
11.
Neuropharmacology ; 224: 109372, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36502869

RESUMO

Apolipoprotein E (ApoE) is an apolipoprotein involved in lipid metabolism and is primarily responsible for lipid transport and cholesterol homeostasis in the central nervous system (CNS). The aim of this study is to explore the role of ApoE in the pathological development of neuropathic pain. First, we examined the location of ApoE in the dorsal root ganglion (DRG) and spinal cord in male mice using immunohistochemistry, and found that ApoE was predominantly expressed in DRG satellite glial cells (SGCs) and macrophages and spinal cord astrocytes. Using a spinal nerve ligation (SNL)-induced neuropathic pain mouse model, we found that nerve injury caused an increase in ApoE expression in the injured DRGs, but not in the spinal cord after SNL surgery. Furthermore, we observed reduced SNL-induced pain hypersensitivity in ApoE knockout mice compared to wild-type mice. Moreover, an antisense oligonucleotide (ASO) targeting the Apoe gene sequence, which was microinjected into the DRG or administered intrathecally, not only reduced ApoE expression in DRG but also attenuated SNL-induced pain hypersensitivity. Finally, we found that a tyrosine kinase receptor AXL, which was previously demonstrated to contribute to neuropathic pain, may mediate ApoE function under neuropathic pain condition. In conclusion, our data suggest that ApoE in DRG promote pain hypersensitivity via the DRG membrane receptor AXL in neurons under neuropathic pain conditions. This study revealed a novel mechanism between lipid homeostasis and neuropathic pain.


Assuntos
Gânglios Espinais , Neuralgia , Animais , Masculino , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Ratos Sprague-Dawley , Nervos Espinhais/lesões , Regulação para Cima , Ratos
12.
Brain Res Bull ; 191: 30-39, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240908

RESUMO

Low back and radicular pain syndromes, usually caused by local inflammation and irritation to the nerve root and dorsal root ganglion (DRG), are common throughout medical practice, but sufficient pain relief is scarce. In this study, we employed a chronic compression of DRG (CCD)-induced radicular pain model in rats to explore whether lysine-specific demethylase 1 (LSD1), a histone demethylase and transcriptional co-repressor, is involved in the pathological process of radicular pain. We found that LSD1 was expressed in various-sized DRG neurons by immunohistochemistry. CCD induced the upregulation of LSD1 in compressed L4-L5 DRGs. Moreover, either LSD1 small interfering RNAs or LSD1 inhibitor attenuated CCD-induced pain hypersensitivities. LSD1 was also upregulated in the injured lumbar 4 (L4) DRG in a spinal nerve ligation (SNL)-induced neuropathic pain mouse model. Nevertheless, LSD1 was not altered in L3-L5 DRGs in complete Freund's adjuvant-induced inflammatory pain mouse model, paclitaxel- or streptozotocin-induced neuropathic pain models. Furthermore, knockdown of LSD1 in the injured L4 DRG reversed SNL-induced pain hypersensitivities in mice. Therefore, we speculate that nerve injury induced the upregulation of LSD1 in the injured DRGs, which contributes to neuropathic pain hypersensitivities; thus, LSD1 may serve as a potential target for the treatment of radicular pain and neuropathic pain.


Assuntos
Hipersensibilidade , Neuralgia , Ratos , Camundongos , Animais , Gânglios Espinais/patologia , Lisina , Ratos Sprague-Dawley , Neuralgia/patologia , Nervos Espinhais/lesões , Modelos Animais de Doenças , Hipersensibilidade/complicações , Hipersensibilidade/patologia , Células Receptoras Sensoriais , Hiperalgesia/patologia
13.
Front Mol Neurosci ; 15: 990260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117915

RESUMO

The microtubule-stabilizing drug paclitaxel (PTX) is a chemotherapeutic agent widely prescribed for the treatment of various tumor types. The main adverse effect of PTX-mediated therapy is chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain, which are similar to the adverse effects associated with other chemotherapeutic agents. Dorsal root ganglia (DRG) contain primary sensory neurons; any damage to these neurons or their axons may lead to neuropathic pain. To gain molecular and neurobiological insights into the peripheral sensory system under conditions of PTX-induced neuropathic pain, we used transcriptomic analysis to profile mRNA and non-coding RNA expression in the DRGs of adult male C57BL/6 mice treated using PTX. RNA sequencing and in-depth gene expression analysis were used to analyze the expression levels of 67,228 genes. We identified 372 differentially expressed genes (DEGs) in the DRGs of vehicle- and PTX-treated mice. Among the 372 DEGs, there were 8 mRNAs, 3 long non-coding RNAs (lncRNAs), 16 circular RNAs (circRNAs), and 345 microRNAs (miRNAs). Moreover, the changes in the expression levels of several miRNAs and circRNAs induced by PTX have been confirmed using the quantitative polymerase chain reaction method. In addition, we compared the expression levels of differentially expressed miRNAs and mRNA in the DRGs of mice with PTX-induced neuropathic pain against those evaluated in other models of neuropathic pain induced by other chemotherapeutic agents, nerve injury, or diabetes. There are dozens of shared differentially expressed miRNAs between PTX and diabetes, but only a few shared miRNAs between PTX and nerve injury. Meanwhile, there is no shared differentially expressed mRNA between PTX and nerve injury. In conclusion, herein, we show that treatment with PTX induced numerous changes in miRNA expression in DRGs. Comparison with other neuropathic pain models indicates that DEGs in DRGs vary greatly among different models of neuropathic pain.

14.
Cell Mol Gastroenterol Hepatol ; 14(2): 494-511, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35569816

RESUMO

BACKGROUND & AIMS: Congenital human cytomegalovirus (HCMV) infection is a common cause of liver injury. The major immediate-early protein 2 (IE2) of HCMV is critical for the progression of HCMV infection. As a result of species isolation, there are no animal models suitable for HCMV infection, which aimed to study the long-term effects of IE2 on embryonic liver development in vivo. Hence, this study aimed to investigate the role of IE2 in liver development using a transgenosis mouse model. METHODS: Rosa26-Loxp-STOP-Loxp (LAS)-IE2+/-, cre mice that could specifically and stably express IE2 in the liver, were constructed. Phenotypic analysis, immunolocalization studies, messenger RNA analyses, transcriptome sequencing, and flow cytometry analysis were performed on Rosa26-LSL-IE2+/-, cre mice during hepatogenesis. RESULTS: Rosa26-LSL-IE2+/-, cre mice could consistently express IE2 at different embryonic stages in vivo. With the development of Rosa26-LSL-IE2+/-, cre embryos from embryonic day 17.5 to postnatal day 1, progressive liver hypoplasia and embryonic deaths were observed. Furthermore, molecular evidence that IE2 expression inhibited hepatocyte proliferation, increased cell apoptosis, and impaired hepatocyte maturation was provided. CONCLUSIONS: Rosa26-LSL-IE2+/-, cre mice could stably express IE2 in the liver. IE2 expression resulted in embryonic liver hypoplasia by disrupting hepatic morphogenesis and hepatocyte maturation, which may be responsible for embryonic deaths. This study is helpful in understanding the mechanism of liver injuries induced by HCMV infection.


Assuntos
Citomegalovirus , Proteínas Imediatamente Precoces , Animais , Citomegalovirus/genética , Citomegalovirus/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Transativadores/metabolismo
15.
Bioorg Chem ; 115: 105178, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303897

RESUMO

Four undescribed ent-kaurane diterpenoids, wilkaunoids A - D (1-4), and three undescribed abietane diterpenoids, wilabinoids A - C (13-15), along with thirteen known ones (5-12 and 16-20), were isolated from Tripterygium wilfordii. Their structures were elucidated by extensive spectroscopic methods, electroniccirculardichroism calculation, and X-ray diffraction analysis. Compounds 1 and 2 were a pair of C-19 epimers of ent-kaurane diterpenoids, featuring a rare 19,20-epoxy-19,20-dimethoxy-kaurane fragment. Compound 3 possessed a rare naturally occurring 1,3-dioxacyclohexane moiety. Compounds 13 and 15 represented the first example of abietane diterpenoids with an isovalerate substitution from the genus of Tripterygium. The possible biosynthetic pathways of 1-3 were postulated. The effect of 1-20 on nitric oxide production was examined in lipopolysaccharide-stimulated RAW 264.7 cells. Abietane diterpenoid quinones 7-13 (IC50: 1.9-10.2 µM) exhibited the significant activity to inhibit nitric oxide production versus positive control (NG-monomethyl-l-arginine acetate salt, IC50 = 24.9 µM). The structure activity relationship of 7-13 in inhibiting nitric oxide production was then discussed. The most potent 7 and 8 were found to significantly suppress the expression of cyclooxygenase-2 and inducible nitric oxide synthase proteins, showing a good anti-inflammatory potential. The findings provided some valuable insights for the discovery and structural modification of abietane diterpenoids towards anti-inflammatory lead compounds.


Assuntos
Abietanos/farmacologia , Anti-Inflamatórios/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Tripterygium/química , Abietanos/química , Animais , Anti-Inflamatórios/química , Diterpenos do Tipo Caurano/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7
16.
Neuroreport ; 32(7): 548-554, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33850082

RESUMO

Neuron-glial-related cell adhesion molecule (NrCAM) is a neuronal cell adhesion molecule that has been shown to be involved in several cellular processes in the peripheral nervous system, including neurite outgrowth. We recently reported that alternative splicing of Nrcam mRNA at exon 10 in the dorsal root ganglion (DRG) contributes to the peripheral mechanism of neuropathic pain. Specially, Nrcam antisense oligonucleotides (ASO) targeting Nrcam exon 10, attenuated neuropathic pain hypersensitivities in mice. Here, we investigated the effect of Nrcam ASO on neurite outgrowth of DRG neurons in vitro. By immunostaining DRG neurons with different DRG markers, Nrcam ASO significantly reduced neurite lengths in neurofilament 200-, calcitonin gene-related peptide and isolectin B4-positive neurons in primary DRG neuronal culture. Moreover, Nrcam ASO activates epidermal growth factor receptor, which may mediate the effect of Nrcam ASO on neurite outgrowth of cultured DRG neurons. These results provide evidence that Nrcam ASO suppresses neurite outgrowth in DRG neurons by regulating alternative splicing of Nrcam gene at exon 10 and activation of epidermal growth factor receptor signaling, indicating the differential roles of NrCAM variants/isoforms in neurite outgrowth.


Assuntos
Moléculas de Adesão Celular/metabolismo , Gânglios Espinais/metabolismo , Crescimento Neuronal/genética , Oligonucleotídeos Antissenso/farmacologia , Células Receptoras Sensoriais/metabolismo , Processamento Alternativo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Moléculas de Adesão Celular/genética , Gânglios Espinais/efeitos dos fármacos , Lectinas/metabolismo , Camundongos , Crescimento Neuronal/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos
17.
Chem Biodivers ; 18(4): e2001066, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656782

RESUMO

Three new matrine-type alkaloids, 8ß-hydroxyoxysophoridine (1), 9ß-hydroxysophoridine (2), 9ß-hydroxyisosophocarpine (3), together with one known analog, 11,12-dehydromatrine (4), were isolated from the seeds of Sophora alopecuroides L. The structures of new compounds were elucidated using extensive spectroscopic techniques including the experimental and calculated ECD data. The anti-inflammatory activities of all the isolates on NO production in RAW 264.7 cells stimulated by lipopolysaccharide were evaluated. Among them, 8ß-hydroxyoxysophoridine (1) showed a significant inhibitory effect with an IC50 value of 18.26 µM.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Óxido Nítrico/antagonistas & inibidores , Extratos Vegetais/farmacologia , Sementes/química , Sophora/química , Alcaloides/química , Alcaloides/isolamento & purificação , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
18.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(12): 1459-1465, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-35131013

RESUMO

OBJECTIVE: To observe the effect of systematic graded rewarming measures on body temperature and prognosis of patients with moderate and severe trauma [revised trauma score (RTS) < 12] requiring emergency operation. METHODS: A prospective randomized double-blind controlled study was conducted. From January 2020 to January 2021, 104 patients who underwent emergency trauma surgery in the Second Affiliated Hospital of Wenzhou Medical University were selected as the research object. According to random number table method, the patients were divided into traditional rewarming group and systematic graded rewarming group, with 52 cases in each group. Patients in traditional rewarming group (only record the body temperature without intervention, and start the rewarming process when the body temperature at any time was less than 36 centigrade); the patients in the system graded rewarming group start the preventive measures as soon as they were admitted to the hospital, and record the body temperature. When the body temperature at any time was less than 36 centigrade, start the graded rewarming process. Observe the rewarming effect, coagulation function, blood gas analysis and postoperative anesthesia recovery time of the two groups and final outcome. RESULTS: With the extension of time, the body temperature of the two groups increased gradually. The body temperature of the systematic grade rewarming group was significantly higher than that of the traditional rewarming group at 2 hours after rewarming and at discharge (centigrade: 36.23±0.77 vs. 35.84±0.93 at 2 hours after rewarming, 36.54±0.87 vs. 35.82±0.92 at discharge, both P < 0.05). The incidence of subsequent hypothermia was significantly lower than that in the traditional rewarming group [7.7% (4/52) vs. 25.0% (13/52), P < 0.05]. The postoperative activated partial thromboplastin time (APTT) of the two groups was significantly shorter than that at admission (s: 35.74±8.05 vs. 45.55±28.02 in the systematic rewarming group, P < 0.05; 38.35±6.48 vs. 42.40±13.18 in the traditional rewarming group, P < 0.05); the intraoperative and postoperative pH values in the systematic rewarming group were significantly higher than those at admission (7.33±0.05, 7.36±0.06 vs. 7.30±0.07, both P < 0.05), while there was no significant difference between the intraoperative and postoperative pH values in the traditional rewarming group and those at admission (7.31±0.06, 7.33±0.06 vs. 7.31±0.05, both P > 0.05). The postoperative prothrombin time (PT) and anesthesia recovery time in the systematic graded rewarming group were significantly shorter than those in the traditional rewarming group [PT (s): 15.05±2.44 vs. 17.94±3.48, anesthesia recovery time (hours): 14.40±11.76 vs. 17.35±10.51, all P < 0.05], and the pH value was significantly higher than that in the traditional rewarming group (7.36±0.06 vs. 7.33±0.06, P < 0.05). The systematic graded rewarming group had higher improvement rate and lower disability rate than the traditional rewarming group (76.9% vs. 65.4% and 17.3% vs. 25.0%, both P < 0.05). CONCLUSIONS: Systematic graded rewarming measures can improve the hypothermia of emergency trauma patients who received surgery, reduce the incidence of subsequent hypothermia of trauma patients, shorten the time of postoperative resuscitation, improve the coagulation function and blood gas indexes, improve the treatment rate, and reduce the incidence of disability.


Assuntos
Hipotermia , Reaquecimento , Temperatura Corporal , Humanos , Hipotermia/terapia , Prognóstico , Estudos Prospectivos
19.
PLoS Genet ; 13(5): e1006770, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28489859

RESUMO

Isoflavones comprise a group of secondary metabolites produced almost exclusively by plants in the legume family, including soybean [Glycine max (L.) Merr.]. They play vital roles in plant defense and have many beneficial effects on human health. Isoflavone content is a complex quantitative trait controlled by multiple genes, and the genetic mechanisms underlying isoflavone biosynthesis remain largely unknown. Via a genome-wide association study (GWAS), we identified 28 single nucleotide polymorphisms (SNPs) that are significantly associated with isoflavone concentrations in soybean. One of these 28 SNPs was located in the 5'-untranslated region (5'-UTR) of an R2R3-type MYB transcription factor, GmMYB29, and this gene was thus selected as a candidate gene for further analyses. A subcellular localization study confirmed that GmMYB29 was located in the nucleus. Transient reporter gene assays demonstrated that GmMYB29 activated the IFS2 (isoflavone synthase 2) and CHS8 (chalcone synthase 8) gene promoters. Overexpression and RNAi-mediated silencing of GmMYB29 in soybean hairy roots resulted in increased and decreased isoflavone content, respectively. Moreover, a candidate-gene association analysis revealed that 11 natural GmMYB29 polymorphisms were significantly associated with isoflavone contents, and regulation of GmMYB29 expression could partially contribute to the observed phenotypic variation. Taken together, these results provide important genetic insights into the molecular mechanisms underlying isoflavone biosynthesis in soybean.


Assuntos
Glycine max/genética , Isoflavonas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Regiões 5' não Traduzidas , Aciltransferases/genética , Aciltransferases/metabolismo , Isoflavonas/genética , Oxigenases/genética , Oxigenases/metabolismo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Glycine max/metabolismo , Fatores de Transcrição/metabolismo
20.
J Cell Biochem ; 118(11): 4012-4019, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28407300

RESUMO

Thrombin has been shown to play a key role in lung diseases such as pulmonary fibrosis via the induction of fibrotic cytokine- chemokine (CC motif) ligand-2 (CCL2) expression. We previously reported that transcription factor nuclear factor-κB (NF-κB) is responsible for thrombin-induced CCL2 expression in human lung fibroblasts (HLFs). Here, we extended our study to investigate the epigenetic regulation mechanism for thrombin-induced CCL2 expression in HLFs. HLFs were cultured in F-12 medium. CCL2 protein and mRNA levels were detected by ELISA and quantitative real-time PCR, respectively. Histone, histone acetyltransferases, and NF-κB binding to CCL2 promoter were detected by ChIP assay. NF-κB activation was detected by Western blotting. We revealed that increased binding of histone acetyltransferase p300 and acetylated histone H3 and H4 to CCL2 promoter are responsible for thrombin induced CCL2 expression in HLF cells. In addition, p300 inhibition attenuates both thrombin induced-CCL2 expression and histone H3 and H4 acetylation in HLFs, suggesting that p300 is involved in thrombin-induced CCL2 expression via hyperacetylating histone H3 and H4. Our data further showed that p300 also regulates CCL2 expression via interaction with NF-κB p65, as depletion of p300 inhibits both NF-κB p65 activation and its binding to CCL2 promoter. The findings strongly suggest that epigenetic dysregulation and the interaction between histone acetyltransferase and transcription factor may be responsible for thrombin induced-CCL2 expression in HLFs. Increased understanding of the epigenetic mechanisms of CCL2 regulation may provide opportunities for identifying novel molecular targets for therapeutic purposes. J. Cell. Biochem. 118: 4012-4019, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Quimiocina CCL2/biossíntese , Proteína p300 Associada a E1A/metabolismo , Epigênese Genética/efeitos dos fármacos , Fibroblastos/metabolismo , Histonas/metabolismo , Pulmão/metabolismo , Trombina/farmacologia , Fator de Transcrição RelA/metabolismo , Acetilação/efeitos dos fármacos , Fibroblastos/citologia , Humanos , Pulmão/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA