Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 3729, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709904

RESUMO

Two-dimensional (2D) magnets with intrinsic ferromagnetic/antiferromagnetic (FM/AFM) ordering are highly desirable for future spintronic devices. However, the direct growth of their crystals is in its infancy. Here we report a chemical vapor deposition approach to controllably grow layered tetragonal and non-layered hexagonal FeTe nanoplates with their thicknesses down to 3.6 and 2.8 nm, respectively. Moreover, transport measurements reveal these obtained FeTe nanoflakes show a thickness-dependent magnetic transition. Antiferromagnetic tetragonal FeTe with the Néel temperature (TN) gradually decreases from 70 to 45 K as the thickness declines from 32 to 5 nm. And ferromagnetic hexagonal FeTe is accompanied by a drop of the Curie temperature (TC) from 220 K (30 nm) to 170 K (4 nm). Theoretical calculations indicate that the ferromagnetic order in hexagonal FeTe is originated from its concomitant lattice distortion and Stoner instability. This study highlights its potential applications in future spintronic devices.

2.
J Am Chem Soc ; 142(22): 10034-10041, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32372644

RESUMO

The quinoid structure, a resonance structure of benzenoid, gives rise to peculiar chemical reactivity and physical properties. A complete characterization of its geometric and electronic properties on the atomic scale is of vital importance to understand and engineer the chemical and physical properties of quinoid molecules. Here, we report a real-space structural and electronic characterization of quinoid poly(para-phenylene) (PPP) chains by using noncontact atomic force microscopy and scanning tunneling microscopy. Our results reveal that quinoid PPP chains adopt a coplanar adsorption configuration on Cu(111) and host in-gap states near Fermi level. In addition, intra- and interchain hopping of quinoid structure are observed, indicative of a quasiparticle behavior originating from charge-lattice interactions. The experimental results are nicely reproduced by tight-binding calculations. Our study provides a comprehensive understanding of the structural and electronic properties of quinoid PPP chains in real space and may be further extended to address the dynamics of nonlinear excitations in quinoid molecules.

3.
Sci Bull (Beijing) ; 64(5): 293-300, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659592

RESUMO

Two-dimensional magnets have received increasing attention since Cr2Ge2Te6 and CrI3 were experimentally exfoliated and measured in 2017. Although layered ferromagnetic metals were demonstrated at room temperature, a layered ferromagnetic semiconductor with high Curie temperature (Tc) is yet to be unveiled. Here, we theoretically predicted a family of high Tc ferromagnetic monolayers, namely MnNX and CrCX (X = Cl, Br and I; C = S, Se and Te). Their Tc values were predicted from over 100 K to near 500 K with Monte Carlo simulations using an anisotropic Heisenberg model. Eight members among them show semiconducting bandgaps varying from roughly 0.23 to 1.85 eV. These semiconducting monolayers also show extremely large anisotropy, i.e. ∼101 for effective masses and ∼102 for carrier mobilities, along the two in-plane lattice directions of these layers. Additional orbital anisotropy leads to a spin-locked linear dichroism, in different from previously known circular and linear dichroisms in layered materials. Together with the mobility anisotropy, it offers a spin-, dichroism- and mobility-anisotropy locking. These results manifest the potential of this 2D family for both fundamental research and high performance spin-dependent electronic and optoelectronic devices.

4.
Nanoscale ; 10(47): 22263-22269, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30465580

RESUMO

Few-layer tellurium is an emerging quasi-one-dimensional layered material. The striking feature of Te is its presence as various few-layer allotropes (α-δ). Although these allotropes offer substantially different physical properties, only the α phase has been synthesized in neutral few-layers as it is so far the most stable few-layer form. Herein, we show that hole or electron doping could maintain a certain Te phase. The ß, α, γ and δ phases appear as the most stable forms of Te bilayer, in sequence, with bandgap variations over 1 eV. In Te trilayer, a novel metallic chiral α + δ phase emerges, leading to the appearance of chirality. Transitions among these phases, understood at the wavefunction level, are accompanied by the emergence or elimination of inversion centers (α-ß, α-γ, α-α + δ), structural anisotropy (α-γ, γ-δ) and chirality (α-α + δ), which could result in substantial changes in optical and other properties. In light of these findings, our work opens a new avenue for stabilizing different allotropes of layered materials; this is crucial for using their outstanding properties. This study also suggests the possibility of building mono-elemental electronic and optoelectronic heterostructures or devices, which are attractive for future applications in electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA