Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Sci Food Agric ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899487

RESUMO

BACKGROUND: Walnut protein (WP) is recognized as a valuable plant protein. However, the poor solubility and functional properties limit its application in the food industry. It is a great requirement to improve the physicochemical properties of WP. RESULTS: Following a 90 min restricted enzymatic hydrolysis period, the solubility of WP significantly increased from 3.24% to 54.54%, with the majority of WP hydrolysates (WPHs) possessing a molecular weight exceeding 50 kDa. Circular dichroism spectra showed that post-hydrolysis, the structure of the protein became more flexible, while the hydrolysis time did not significantly alter the protein's secondary structure. After hydrolysis, WP's surface hydrophobicity significantly increased from 2279 to 6100. Furthermore, WPHs exhibited a strong capacity for icariin loading and micelle formation with critical micelle concentration values of 0.71, 0.99 and 1.09 mg mL-1, respectively. Moreover, similar immuno-enhancement activities were observed in WPHs. After exposure to WPHs, the pinocytosis of RAW264.7 macrophages was significantly improved. WPH treatment also increased the production of nitric oxide, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in macrophages. Up-regulation of mRNA expressions of IL-6, inducible nitric oxide synthase (iNOS) and TNF-α was observed in a dose-dependent manner. CONCLUSION: The enhancement of functionality and bioactivity in WP can be achieved through the application of limited enzyme digestion with trypsin. This process effectively augments the nutritional value and utility of the protein, making it a valuable component in various dietary applications. © 2024 Society of Chemical Industry.

2.
Plant Cell ; 36(5): 1868-1891, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299382

RESUMO

Carotenoids are essential for photosynthesis and photoprotection. Plants must evolve multifaceted regulatory mechanisms to control carotenoid biosynthesis. However, the regulatory mechanisms and the regulators conserved among plant species remain elusive. Phytoene synthase (PSY) catalyzes the highly regulated step of carotenogenesis and geranylgeranyl diphosphate synthase (GGPPS) acts as a hub to interact with GGPP-utilizing enzymes for the synthesis of specific downstream isoprenoids. Here, we report a function of Nudix hydrolase 23 (NUDX23), a Nudix domain-containing protein, in post-translational regulation of PSY and GGPPS for carotenoid biosynthesis. NUDX23 expresses highly in Arabidopsis (Arabidopsis thaliana) leaves. Overexpression of NUDX23 significantly increases PSY and GGPPS protein levels and carotenoid production, whereas knockout of NUDX23 dramatically reduces their abundances and carotenoid accumulation in Arabidopsis. NUDX23 regulates carotenoid biosynthesis via direct interactions with PSY and GGPPS in chloroplasts, which enhances PSY and GGPPS protein stability in a large PSY-GGPPS enzyme complex. NUDX23 was found to co-migrate with PSY and GGPPS proteins and to be required for the enzyme complex assembly. Our findings uncover a regulatory mechanism underlying carotenoid biosynthesis in plants and offer promising genetic tools for developing carotenoid-enriched food crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Carotenoides , Regulação da Expressão Gênica de Plantas , Carotenoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Nudix Hidrolases , Cloroplastos/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Farnesiltranstransferase/metabolismo , Farnesiltranstransferase/genética , Pirofosfatases/metabolismo , Pirofosfatases/genética , Processamento de Proteína Pós-Traducional , Plantas Geneticamente Modificadas , Folhas de Planta/metabolismo , Folhas de Planta/genética
3.
Sci Rep ; 13(1): 20072, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973917

RESUMO

This work deals with providing a green pulping process of rice straw with zero waste discharged, via valorization of its by-product as a promising precursor for production of carbon nanostructures. The carbon nanostructures (BL-CNSs) from rice straw pulping liquors (BLs) are prepared in one step with phosphoric acid activation. The carbon nanostructures (BL-CNSs) from rice straw pulping liquors (BLs) are prepared in one step with phosphoric acid activation. The optimal pulping approach for achieving effective adsorbent (BL-CNSs) of cationic and anionic dyes is recommended from using different BLs precursors resulting from different reagents (alkaline, neutral, and acidic reagents). The carbon precursors are characterized by elemental, thermal (TGA and DTG) and ATR FTIR analyses. While the impact of pulping route on performance of CNSs is evaluated by their adsorption of iodine, cationic dye and anionic dye, as well as ATR-FTIR, textural characterization, and SEM. The data of elemental analysis displayed a high Carbon content ranges from 57.85 to 66.69% suitable for CNSs preparation, while the TGA showed that Sulphur-containing BLs (Kraft, neutral sulfite and acidic sulfite) have higher degradation temperature and activation energies as compared with other BLs. The optimum BL-CNSs adsorbent is prepared from the disposed neutral sulfite black liquor, with the following characteristics: cationic dye adsorption capacity 163.9 mg/g, iodine value 336.9 mg/g and SBET 310.6 m2/g. While the Kraft-CNSs provided highest anionic adsorption (70.52 mg/g). The studies of equilibrium and kinetic adsorption of dyes showed that the adsorption equilibrium of all investigated BL-CNSs toward MB follow the Langmuir and mainly Freundlich models for BB adoption. Their adsorption kinetics are a good fit with the pseudo-second-order model. The textural characterization and SEM revealed the CNSs exhibit a mixture of mesoporous and microporous structure.

4.
Plant Physiol ; 193(1): 643-660, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37233026

RESUMO

Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown. In melon (Cucumis melo) fruit, ß-carotene accumulation in chromoplasts is governed by ORANGE (OR), a key regulator for carotenoid accumulation in chromoplasts. By using comparative proteomic analysis of a high ß-carotene melon variety and its isogenic line low-ß mutant that is defective in CmOr with impaired chromoplast formation, we identified carotenoid sequestration protein FIBRILLIN1 (CmFBN1) as differentially expressed. CmFBN1 expresses highly in melon fruit tissue. Overexpression of CmFBN1 in transgenic Arabidopsis (Arabidopsis thaliana) containing ORHis that genetically mimics CmOr significantly enhances carotenoid accumulation, demonstrating its involvement in CmOR-induced carotenoid accumulation. Both in vitro and in vivo evidence showed that CmOR physically interacts with CmFBN1. Such an interaction occurs in plastoglobules and results in promoting CmFBN1 accumulation. CmOR greatly stabilizes CmFBN1, which stimulates plastoglobule proliferation and subsequently carotenoid accumulation in chromoplasts. Our findings show that CmOR directly regulates CmFBN1 protein levels and suggest a fundamental role of CmFBN1 in facilitating plastoglobule proliferation for carotenoid sequestration. This study also reveals an important genetic tool to further enhance OR-induced carotenoid accumulation in chromoplasts in crops.


Assuntos
Arabidopsis , Cucurbitaceae , beta Caroteno/metabolismo , Cucurbitaceae/metabolismo , Fibrilinas/metabolismo , Proteômica , Carotenoides/metabolismo , Plastídeos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Frutas/genética
5.
J Am Chem Soc ; 145(22): 12233-12243, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37222742

RESUMO

Photocatalytic [3 + 2] cycloadditions and control of stereochemistry have remained a substantial challenge, particularly in the context of heterocycle synthesis; sporadic successful examples have involved enantioselective [3 + 2] photocycloaddition between redox-active direct group-containing cyclopropanes and alkenes for creation of cyclopentanes. Herein, we report a cooperative catalytic system comprising a chiral nickel Lewis acid catalyst and an organic photocatalyst fueled by visible-light irradiation that allows for the hitherto elusive asymmetric [3 + 2] photocycloaddition of ß-keto esters with vinyl azides under redox-neutral conditions. This protocol enables highly enantioselective construction of polycyclic densely substituted 3,4-dihydro-2H-pyrrole heterocycles featuring two contiguous tetrasubstituted carbon stereocenters, including a useful chiral N,O-ketal motif that is not easily accessible with other catalytic methods. Mechanistic studies revealed that the overall reactivity relies on the seamless integration of dual roles of nickel catalysts by the catalytic formation of the substrate/Ni complex, assisting both photoredox event and enantioselective radical addition.

6.
Mol Plant ; 16(6): 1048-1065, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37202926

RESUMO

Chlorophylls and carotenoids are essential photosynthetic pigments. Plants spatiotemporally coordinate the needs of chlorophylls and carotenoids for optimal photosynthesis and fitness in response to diverse environmental and developmental cues. However, how the biosynthesis pathways of these two pigments are coordinated, particularly at posttranslational level to allow rapid control, remains largely unknown. Here, we report that the highly conserved ORANGE (OR) family proteins coordinate both pathways via posttranslationally mediating the first committed enzyme in each pathway. We demonstrate that OR family proteins physically interact with magnesium chelatase subunit I (CHLI) in chlorophyll biosynthesis pathway in addition to phytoene synthase (PSY) in carotenoid biosynthesis pathway and concurrently stabilize CHLI and PSY enzymes. We show that loss of OR genes hinders both chlorophyll and carotenoid biosynthesis, limits light-harvesting complex assembly, and impairs thylakoid grana stacking in chloroplasts. Overexpression of OR safeguards photosynthetic pigment biosynthesis and enhances thermotolerance in both Arabidopsis and tomato plants. Our findings establish a novel mechanism by which plants coordinate chlorophyll and carotenoid biosynthesis and provide a potential genetic target to generate climate-resilient crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Clorofila/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Carotenoides/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Chaperonas Moleculares/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36288484

RESUMO

An interpenetrating structure endows metal-organic frameworks (MOFs) with many exciting applications, such as fluorescence detection and host-guest chemistry. Herein, two unique structure-interpenetrating In-MOFs (In-pdda-1 and In-pdda-2; H2pdda = 4,4'-(pyridine-2,5-diyl)dibenzoic acid) are constructed by different coordination configurations. The four-connected In3+ center shows a triangular-pyramidal configuration or a 2D rectangle, forming an unc topology for In-pdda-1 and a sql network for In-pdda-2, respectively. Two different interpenetrating modes created by linear rigid ligands and metal clusters are observed in the two MOFs (In-pdda-1, 8-fold interpenetrating mode; In-pdda-2, [2D + 2D] interpenetrating mode), which determine the channel-size-dependent properties in fluorescence applications. During the quantitative detection process of gossypol, the small rhombic channels divided by interpenetrating molecular planes of In-pdda-2 greatly limit the distance between the analyte and the probe, promoting electron transfer and energy transfer processes and thus resulting in a low detection limit (28.6 nM). In addition, the pore size effect of In-pdda-1 encouraged us to explore an in situ perovskite quantum dot encapsulation strategy to obtain a MAPbBr3@MOF material with tunable and stable luminescence properties. Both of the above channel-size-dependent fluorescence properties may provide inspiration for the structural design and specialized applications of MOF materials.

8.
Methods Enzymol ; 671: 301-325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35878983

RESUMO

Carotenoids are indispensable to plants. The regulatory mechanisms underlying carotenoid metabolism have been subjected to intensive investigation. Post-translational regulation is critically important to rapidly modulate enzyme protein level and activity in fine-tuning carotenoid production in living organisms. However, the regulatory controls at the post-translational level are poorly understood. This chapter highlights the recent advances in this area of research and presents the protein-protein interaction protocols to study the post-translational regulation of carotenogenesis.


Assuntos
Carotenoides , Plantas , Carotenoides/metabolismo , Plantas/metabolismo
9.
BMC Plant Biol ; 22(1): 357, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869418

RESUMO

BACKGROUND: In eudicots, germination begins with water uptake by the quiescent dry seed and is greatly related to the permeability of micropyle enriched callose layers. Once imbibition starts, seeds undergo a cascade of physiological, biochemical, and molecular events to initiate cellular activities. However, the effects of callose on water uptake and following seed metabolic events during germination are largely unknown. Cotton (Gossypium hirsutum) is a eudicot plant with natural fiber and edible oil production for humans. Here, we addressed this question by examining the role of GhGLU19, a gene encoding ß-1,3-glucanase, in cotton seed germination. RESULTS: GhGLU19 belongs to subfamily B and was expressed predominately in imbibed seeds and early seedlings. Compared to wild type, GhGLU19-suppressing and GhGLU19-overexpressing transgenic cotton lines showed the higher and lower seed germination percentage, respectively. Callose was enriched more at inner integument (ii) than that in embryo and seed coat in cotton seeds. In GhGLU19-suppressing lines, callose at ii of cotton seeds was greatly increased and brought about a prolonged water uptake process during imbibition. Both proteomic and transcriptomic analysis revealed that contrary to GhGLU19-overexpressing lines, the glycolysis and pyruvate metabolism was decreased, and abscisic acid (ABA) biosynthesis related genes were downregulated in imbibed seeds of GhGLU19-suppressing lines. Also, endogenous ABA was significantly decreased in GhGLU19-suppressing line while increased in GhGLU19-overexpressing line. CONCLUSIONS: Our results demonstrate that suppression of GhGLU19 improves cotton seed germination via accumulating callose of inner integument, modulating glycolysis and pyruvate metabolism, and decreasing ABA biosynthesis. This study provides a potential way for improving germination percentage in cotton seed production, and other eudicot crops.


Assuntos
Germinação , Gossypium , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/fisiologia , Gossypium/metabolismo , Humanos , Proteômica , Piruvatos/metabolismo , Piruvatos/farmacologia , Sementes/metabolismo , Água/metabolismo
10.
Food Funct ; 13(12): 6726-6736, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35661183

RESUMO

The interaction between epigallocatechin gallate (EGCG) and soy proteins at room temperature (25 °C) and after heating at 100 and 121 °C, and their effects on the inactivation of soybean trypsin inhibitors (STIs) in soymilk were investigated. The results of the nitroblue tetrazolium (NBT) staining assay showed that soy proteins can covalently bind to EGCG. The α/α' and A subunits in heated soymilk preferred to bind to EGCG because of their soluble state. More thiols were trapped when EGCG was added before thermal processing, and the free amino groups were depleted more with EGCG addition after heating. Circular dichroism and fluorescence spectroscopy showed that EGCG addition before or after heating induced different secondary and tertiary structural changes for soy proteins. The exposed aromatic amino acids preferred to react with EGCG before protein aggregation in the heating process. The random coil of soymilk proteins increased more when EGCG was added in soymilk after heating, resulting in more disordered structures in protein conformation. The binding between EGCG and soy proteins promoted protein aggregation, which was confirmed by the particle size distribution and gel electrophoresis. The trypsin and chymotrypsin inhibitory activity (TIA and CIA) in soymilk significantly reduced to 693 U mL-1 and 613 U mL-1, respectively, under the conditions of 2 mM EGCG addition after 100 °C heating for 10 min (p < 0.05). Consequently, the influence of EGCG on STI inactivation in soymilk only worked when EGCG was added after heating.


Assuntos
Catequina , Infecções Sexualmente Transmissíveis , Catequina/química , Catequina/farmacologia , Polifenóis/farmacologia , Agregados Proteicos , Proteínas de Soja/química , Glycine max/química , Chá , Inibidores da Tripsina/farmacologia
11.
Front Plant Sci ; 13: 884720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498681

RESUMO

Phytoene synthase (PSY) catalyzes the first committed step in the carotenoid biosynthesis pathway and is a major rate-limiting enzyme of carotenogenesis. PSY is highly regulated by various regulators and factors to modulate carotenoid biosynthesis in response to diverse developmental and environmental cues. Because of its critical role in controlling the total amount of synthesized carotenoids, PSY has been extensively investigated and engineered in plant species. However, much remains to be learned on its multifaceted regulatory control and its catalytic efficiency for carotenoid enrichment in crops. Here, we present current knowledge on the basic biology, the functional evolution, the dynamic regulation, and the metabolic engineering of PSY. We also discuss the open questions and gaps to stimulate additional research on this most studied gene/enzyme in the carotenogenic pathway.

12.
Food Chem ; 387: 132868, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35381416

RESUMO

Soybean peptides serve as functional foods with impressive health benefits. The structure characteristics of peptides are highly related to the health benefits. The structure-activity relationship and mechanism underlined are important scientific questions in this field. To answer these questions, soybean peptides were produced by combinatory enzymatic hydrolysis in this work. Fifty-two peptide sequences were identified by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The anti-inflammatory activities of these peptides were investigated by using a lipopolysaccharide (LPS)-induced inflammation cell model. Soybean peptides could significantly promote cell proliferation. Additionally, soybean peptides could alleviate LPS-induced inflammation by reducing the production and expression of nitric oxide (NO), tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6). Moreover, soybean peptides could promote the mRNA expression of proteins related to inflammation inhibition (IL-10) and tight junction modulation. The structure-activity relationship was addressed. The results documented the potential of soybean peptides as functional foods.


Assuntos
Glycine max , Lipopolissacarídeos , Inflamação/tratamento farmacológico , Inflamação/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/farmacologia , Glycine max/química , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Biol Macromol ; 209(Pt A): 814-824, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390402

RESUMO

The human digestive and absorption system has a specific pH environment, which makes it difficult to for accurate drug-release. Zwitterionic hydrogel, as a kind of drug carrier, is a feasible response strategy. In this work, a facile method was employed to prepare a series zwitterionic hydrogels composed of BC and chitosan. The composite gels could in-situ formed via Schiff's base reaction between partially oxidated bacterial cellulose and chitosan which exhibited relatively well mechanical properties. Besides, the rich amino and carboxyl groups endowed the hydrogels with excellent pH responsive performance. The minimum swelling rate of the hydrogels appeared at pH 3.5-pH 5.0. In lower or higher pH solutions, the swelling rate was greatly increased. The drug (naproxen) loading of the hydrogels was above 110 mg/g. The release amount of naproxen in the simulated gastric juice was less than intestinal fluid with the sustained release time exceeded 24 h. Through kinetic simulation analysis, the drug release behavior is in accordance with zero-order release model. Such kind of composite hydrogel is suggested to be a potential drug carrier for clinical therapy.


Assuntos
Quitosana , Hidrogéis , Bactérias , Celulose/química , Quitosana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Naproxeno
14.
Mol Hortic ; 2(1): 3, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-37789426

RESUMO

Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.

15.
Dalton Trans ; 50(22): 7554-7562, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33973607

RESUMO

A special functional group mediated functionalization platform is introduced as a new and versatile platform tool to improve the fluorescence detection performance of metal-organic frameworks (MOF). The creation of a mixed-functionalization strategy on a MOF realizes the high sensitivity detection of heavy metal ions, anions and small molecules. In this work, we have first reported a novel amino functionalized 3D indium MOF [In(BDC-NH2)(OH)]n (In1-NH2) which not only has an excellent fluorescent characteristic but also shows highly sensitive identification of Fe3+, Cu2+, Pb2+ and ClO- in water with broad linear ranges and short response times. Subsequently, based on the remaining amino group site of In1-NH2, a post-synthetic modification strategy is utilized to introduce an active boronic acid group for hydrogen peroxide detection. The obtained PBA-In1 exhibits an efficient sensing performance for hydrogen peroxide with an LOD of 0.42 µM. Given this, PBA-In1 is expected to become an effective probe to monitor the formation of metabolites in humans. In1-NH2 successfully achieves multiple ion detection and the PBA-In1 sensing platform with boronic acid functionalization may have good application prospects in biochemical research in the future.


Assuntos
Ácidos Borônicos/química , Peróxido de Hidrogênio/análise , Ácido Hipocloroso/análise , Estruturas Metalorgânicas/química , Metais Pesados , Ácidos Ftálicos/química , Poluentes Químicos da Água/análise , Biomarcadores/análise , Monitoramento Ambiental , Fluorescência , Metais Pesados/análise , Metais Pesados/química
16.
Food Chem ; 359: 129970, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015561

RESUMO

Soybean peptides are functional food with good health benefits. The health benefits presented are highly dependent on the peptide structure. In this work, soybean peptides were prepared by alkaline protease hydrolysis of soybean proteins. The peptide structure was identified by UPLC-MS/MS. The full peptide composition was revealed. The sequences of 51 peptides were identified and 46 peptides were assigned as immunomodulatory peptides. By evaluating the immumonodulatory activity and mechanism, soybean peptides could facilitate the proliferation of macrophages. The pinocytotic activity and NO level were increased. Induction of iNOS mRNA expression by soybean peptides was responsible for the increased NO production. The release of cytokines IL-6 and TNF-α was elevated and their levels were equal to positive control. The mRNA expression levels of IL-6 and TNF-α were also improved by soybean peptides, but much lower than positive control. The results were helpful for application of soybean peptides in functional foods.


Assuntos
Adjuvantes Imunológicos/farmacologia , Glycine max/química , Peptídeos/química , Proteínas de Soja/química , Cromatografia Líquida , Alimento Funcional , Hidrólise , Espectrometria de Massas em Tandem
17.
Hortic Res ; 8(1): 112, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931604

RESUMO

Carotenoids, such as ß-carotene, accumulate in chromoplasts of various fleshy fruits, awarding them with colors, aromas, and nutrients. The Orange (CmOr) gene controls ß-carotene accumulation in melon fruit by posttranslationally enhancing carotenogenesis and repressing ß-carotene turnover in chromoplasts. Carotenoid isomerase (CRTISO) isomerizes yellow prolycopene into red lycopene, a prerequisite for further metabolism into ß-carotene. We comparatively analyzed the developing fruit transcriptomes of orange-colored melon and its two isogenic EMS-induced mutants, low-ß (Cmor) and yofi (Cmcrtiso). The Cmor mutation in low-ß caused a major transcriptomic change in the mature fruit. In contrast, the Cmcrtiso mutation in yofi significantly changed the transcriptome only in early fruit developmental stages. These findings indicate that melon fruit transcriptome is primarily altered by changes in carotenoid metabolic flux and plastid conversion, but minimally by carotenoid composition in the ripe fruit. Clustering of the differentially expressed genes into functional groups revealed an association between fruit carotenoid metabolic flux with the maintenance of the photosynthetic apparatus in fruit chloroplasts. Moreover, large numbers of thylakoid localized photosynthetic genes were differentially expressed in low-ß. CmOR family proteins were found to physically interact with light-harvesting chlorophyll a-b binding proteins, suggesting a new role of CmOR for chloroplast maintenance in melon fruit. This study brings more insights into the cellular and metabolic processes associated with fruit carotenoid accumulation in melon fruit and reveals a new maintenance mechanism of the photosynthetic apparatus for plastid development.

18.
ACS Appl Mater Interfaces ; 12(52): 58239-58251, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33345540

RESUMO

It is very significant that functional porous metal-organic frameworks are used to manufacture hierarchical components to achieve cascading functions that cannot be achieved by a single-layer metal-organic framework (MOF). Here, we report two cases of novel MOFs constructed by the same ligand, Cu(I)-tpt and Cu(II)-tpt (Htpt = 5-[4(1H-1,2,4-triazol-1-yl)]phenyl-2H-tetrazole), and prepared a Cu(II)-tpt-on-Cu(I)-tpt membrane by a layer-by-layer approach ignoring the lattice mismatch problem. The first Cu(I)-tpt layer is grown on an oriented Cu2O nanostructured array by a "one-pot" approach. The aligned second Cu(II)-tpt layer can be deposited using liquid-phase epitaxy. Notably, the prepared Cu(II)-tpt-on-Cu(I)-tpt membrane combines adsorption and fluorescence sensing, which exhibited significant adsorption for Cr2O72- (203.25 mg g-1) as typical highly poisonous ions with a fluorescence quenching response. Hence, based on the oxidation-reduction between Cr2O72- and p-arsanilic acid (p-ASA), the Cu(II)-tpt-on-Cu(I)-tpt membrane's ability to adsorb Cr2O72- could be used to design "on-off-on" mode fluorescence probes to detect p-ASA with high sensitivity (limit of detection (LOD) = 0.0556 µg L-1). p-ASA can be degraded into highly toxic inorganic arsenic compounds in the natural environment and has received widespread attention. Therefore, the integration of adsorption and fluorescence properties makes the Cu(II)-tpt-on-Cu(I)-tpt membrane a feasible multifunctional material for pollution control and detection.

19.
Inorg Chem ; 59(9): 5983-5992, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32314913

RESUMO

Three-dimensional (3D) porous carbon materials have received substantial attention owing to their unique structural features. However, the synthesis of 3D porous carbon, especially 3D porous carbon with hollow spheres structures at the connection points, still pose challenges. Herein, we first develop a metal-organic complexes@melamine foam (MOC@MF) template strategy, by using hot-pressing and carbonization method to synthesize 3D porous carbon with hollow spheres structures (denoted as NOPCs). The formation mechanism of NOPCs can be attributed to the difference in Laplace pressure and surface energy gradient between the carbonized MOC and carbonized MF. These rare 3D porous carbons exhibit high BET surface area (2453.8 m2 g-1), N contents (10.5%), and O contents (16.3%). Moreover, NOPCs show significant amounts of toluene and methanol at room temperature, reaching as high as 1360 and 1140 mg g-1. The adsorption amounts of SO2 and CO2 for NOPCs are up to 93.1 and 445 mg g-1. Theoretical calculation indicates surfaces of porous carbon with N and O coexistence could strongly enhance adsorption with high adsorption energy of -65.83 kJ mol g-1.

20.
Org Lett ; 22(6): 2470-2475, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32125860

RESUMO

A visible light photoredox-promoted and nitrogen radical catalyzed [3 + 2] cyclization of vinylcyclopropanes and N-tosyl vinylaziridines with alkenes is developed. Key to the success of this process is the use of the readily tunable hydrazone as a nitrogen radical catalyst. Preliminary mechanism studies suggest that the photogenerated nitrogen radical undergoes reversible radical addition to the vinylcyclopropanes and N-tosyl vinylaziridines to enable their ring-opening C-C and C-N bond cleavage and ensuing cyclization with alkenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA