RESUMO
Sliding ferroelectricity enables materials with intrinsic centrosymmetric symmetry to generate spontaneous polarization via stacking engineering, extending the family of ferroelectric materials and enriching the field of low-dimensional ferroelectric physics. Vertical ferroelectric domains, where the polarization is perpendicular to atomic motion, have been discovered in twisted bilayers of inversion symmetry broken systems such as hexagonal boron nitride, graphene, and transition metal chalcogenides. In this study, we demonstrate that this symmetry breaking also induces lateral polar networks in twisted bilayer rhombohedral-stacked WSe2, as determined through symmetry considerations and vector piezoresponse force microscopy (V-PFM) results. Lateral polarization (LP) in saddle point (SP) regions forms head-to-tail triangular vortices, exhibiting elliptical domain shapes with widths up to 40 nm. The LP encloses the vertical polarization (VP), forming a network of Bloch-type merons and antimerons. Our work enhances the understanding of domain distribution and polarization orientation in moiré ferroelectrics.
RESUMO
Moiré superlattices in twisted van der Waals homo/heterostructures present a fascinating interplay between electronic and atomic structures, with potential applications in electronic and optoelectronic devices. Flexoelectricity, an electromechanical coupling between electric polarization and strain gradient, is intrinsic to these superlattices because of the lattice misfit strain at the atomic scale. However, due to its weak magnitude, the effect of flexoelectricity on moiré ferroelectricity has remained underexplored. Here, the role of flexoelectricity in shaping and modulating the moiré ferroelectric patterns in twisted hBN homojunction is unveiled. Enhanced flexoelectric effects induce unique stacking ferroelectric domains with hollow triangular structures. Interlayer bubbles influence domain shape and periodicity through local electric field modulation, and tip-stress enables the reversible manipulation of domain area and polarization direction. These findings highlight the impact of flexoelectric effects on moiré ferroelectricity, offering a new tuning knob for its manipulation.
RESUMO
Transition metal dichalcogenides (TMDs) are drawing significant attention due to their intriguing photoelectric properties, and these interesting properties are closely related to the number of layers. Obtaining layer-controlled and high-quality TMD is still a challenge. In this context, we use the salt-assisted chemical vapor deposition to grow multilayered MoSe2 flake and characterize it by Raman spectroscopy, second harmonic generation, and photon luminescence. Spectroscopic analysis is an effective way to characterize the stacking order and optoelectronic properties of two-dimensional materials. Notably, the corresponding mapping reflects the film quality and homogeneity. We found that the grown continuous monolayer, bilayer, and trilayer of MoSe2 sheets with different stacking orders exhibit distinctive features. For bilayer MoSe2, the most stable stacking configurations are the AA' and AB order. And the uniformity of the spectroscopy maps demonstrates the high quality of the stacked MoSe2 sheets.
RESUMO
Background: Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease that seriously jeopardizes human physical and mental health and reduces quality of life. Intestinal flora is one of the critical areas of exploration in T1DM research. Objective: This study aims to explore the research hotspot and development trend of T1DM and intestinal flora to provide research direction and ideas for researchers. Methods: We used the Web of Science (WOS) Core Collection and searched up to 18 November 2023, for articles on studies of the correlation between T1DM and intestinal flora. CiteSpace, VOSviewers and R package "bibliometrix" were used to conduct this bibliometric analysis. Results: Eventually, 534 documents met the requirements to be included, and as of 18 November 2023, there was an upward trend in the number of publications in the field, with a significant increase in the number of articles published after 2020. In summary, F Susan Wong (UK) was the author with the most publications (21), the USA was the country with the most publications (198), and the State University System of Florida (the United States) was the institution with the most publications (32). The keywords that appeared more frequently were T cells, fecal transplants, and short-chain fatty acids. The results of keywords with the most robust citation bursts suggest that Faecalibacterium prausnitzii and butyrate may become a focus of future research. Conclusion: In the future, intestinal flora will remain a research focus in T1DM. Future research can start from Faecalibacterium prausnitzii and combine T cells, fecal bacteria transplantation, and short-chain fatty acids to explore the mechanism by which intestinal flora affects blood glucose in patients with T1DM, which may provide new ideas for the prevention and treatment of T1DM.
RESUMO
Phase transitions play an important role in tuning the physical properties of two-dimensional (2D) materials as well as developing their high-performance device applications. Here, we reported the observation of a phase transition in few-layered MoTe2 flakes by the irradiation of gallium (Ga+) ions using a focused ion beam (FIB) system. The semiconducting 2H phase of MoTe2 can be controllably converted to the metallic 1T'-like phase via Te defect engineering during irradiations. By taking advantage of the nanometer-sized Ga+ ion probe proved by FIB, in-plane 1T'-2H homojunctions of MoTe2 at submicrometer scale can be fabricated. Furthermore, we demonstrate the improvement of device performance (on-state current over 2 orders of magnitude higher) in MoTe2 transistors using the patterned 1T'-like phase regions as contact electrodes. Our study provides a new strategy to drive the phase transitions in MoTe2, tune their properties, and develop high-performance devices, which also extends the applications of FIB technology in 2D materials and their devices.
RESUMO
The valley polarization, induced by the magnetic proximity effect, in monolayer transition metal dichalcogenides (TMDCs), has attracted significant attention due to the intriguing fundamental physics. However, the enhancement and modulation of valley polarization for real device applications is still a challenge. Here, using first-principles calculations we investigate the valley polarization properties of monolayer TMDCs CrS2 and CrSe2 and how to enhance the valley polarization by constructing Janus CrSSe (with an internal electric field) and modulate the polarization in CrSSe by applying external electric fields. Janus CrSSe exhibits inversion symmetry breaking, internal electric field, spin-orbit coupling, and compelling spin-valley coupling. A magnetic substrate of the MnO2 monolayer can induce a modest magnetic moment in CrSe2, CrSe2, and CrSSe. Notably, the Janus structure with an internal electric field has a much larger valley p compared with its non-Janus counterparts. Moreover, the strength of valley polarization can be further modulated by applying external electric fields. These findings suggest that Janus materials hold promise for designing and developing advanced valleytronic devices.
RESUMO
Designing a broad-spectrum gas sensor capable of identifying gas components in complex environments, such as mixed atmospheres or extreme temperatures, is a significant concern for various technologies, including energy, geological science, and planetary exploration. The main challenge lies in finding materials that exhibit high chemical stability and wide working temperature range. Materials that amplify signals through non-chemical methods could open up new sensing avenues. Here, we present the discovery of a broad-spectrum gas sensor utilizing correlated two-dimensional electron gas at a delta-doped LaAlO3/SrTiO3 interface with LaFeO3. Our study reveals that a back-gating on this two-dimensional electron gas can induce a non-volatile metal to insulator transition, which consequently can activate the two-dimensional electron gas to sensitively and quantitatively probe very broad gas species, no matter whether they are polar, non-polar, or inert gases. Different gas species cause resistance change at their sublimation or boiling temperature and a well-defined phase transition angle can quantitatively determine their partial pressures. Such unique correlated two-dimensional electron gas sensor is not affected by gas mixtures and maintains a wide operating temperature range. Furthermore, its readout is a simple measurement of electric resistance change, thus providing a very low-cost and high-efficient broad-spectrum sensing technique.
RESUMO
Laser irradiation is a powerful tool in inducing changes in lattice structures and properties of two-dimensional (2D) materials through processes such as heating, bleaching, catalysis, etc. However, the underlying mechanisms of such transformations vary dramatically in different 2D materials. Here, we report the structural transformation of layered titanium trisulfide (TiS3) to titanium disulfide (TiS2) after irradiation. We systematically characterized the dependence of the transformation on laser power, flake thickness, irradiation time, and vacuum conditions using microscopic and spectroscopic methods. The underlying mechanism is confirmed as the heat-induced materials decomposition, a process that also occurs in many other transition metal trichalcogenide materials. Furthermore, we demonstrate that this spatial-resolved method also enables the creation of in-plane TiS3-TiS2 heterostructures. Our study identifies a new family of 2D materials that undergo a structural transformation after laser irradiation and enriches the methods available for developing new prototypes of low-dimensional devices in the future.
RESUMO
Myosin X forms an antiparallel dimer and moves processively on actin bundles. How the antiparallel dimer affects the stepping mechanism of myosin X remains elusive. Here, we generated several chimeras using domains of myosin V and X and performed single-molecule motility assays. We found that the chimera containing the motor domain from myosin V and the lever arm and antiparallel coiled-coil domain from myosin X has multiple forward step sizes and moves processively, similar to full-length myosin X. The chimera containing the motor domain and lever arm from myosin X and the parallel coiled-coil from myosin V takes steps of â¼40 nm at lower ATP concentrations but was nonprocessive at higher ATP concentrations. Furthermore, mutant myosin X with four mutations in the antiparallel coiled-coil domain failed to dimerize and was nonprocessive. These results imply that the antiparallel coiled-coil domain is necessary for multiple forward step sizes of myosin X.
Assuntos
Miosina Tipo V , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Domínios Proteicos , Dimerização , Trifosfato de AdenosinaRESUMO
Two-dimensional (2D) layered materials with low crystal symmetries have exhibited unique anisotropic physical properties. Here, we report systematic studies on the photoresponse of field effect transistors (FETs) fabricated using quasi-one-dimensional ZrS3 nanoflakes. The as-fabricated phototransistors exhibit a broadband photocurrent response from ultraviolet to visible regions, where the responsivity and detectivity can be enhanced via additional gate voltages. Furthermore, benefiting from the strong in-plane anisotropy of ZrS3, we observe a gate-voltage and illumination wavelength-dependent polarized photocurrent response, while its sub-millisecond-time response speed is also polarization-dependent. Our results demonstrate the flexible tunability of photodetectors based on anisotropic layered semiconductors, which substantially broadens the application of low symmetry layered materials in polarization-sensitive optoelectronic devices.
RESUMO
The electric dipole locking effect observed in van der Waals (vdW) ferroelectric α-In2Se3 has resulted in a surge of applied research in electronics with nonvolatile functionality. However, ferroelectric tunnel junctions with advantages of lower power consumption and faster writing/reading operations have not been realized in α-In2Se3. Here, we demonstrate the tunneling electroresistance effect in a lateral ß/α/ß In2Se3 heterojunction built by local laser irradiation. Switchable in-plane polarizations of the vdW ferroelectric control the tunneling conductance of the heterojunction device by 4000% of magnitude. The electronic logic bit can be represented and stored with different orientations of electric dipoles. This prototype enables a new approach to rewritable nonvolatile memory with in-plane ferroelectricity in vdW 2D materials.
RESUMO
The gate dielectric layer is an important component in building a field-effect transistor. Here, we report the synthesis of a layered rhombohedral-structured MnAl2S4 crystal, which can be mechanically exfoliated down to the monolayer limit. The dielectric properties of few-layered MnAl2S4 flakes are systematically investigated, whereby they exhibit a relative dielectric constant of over 6 and an electric breakdown field of around 3.9 MV/cm. The atomically smooth thin MnAl2S4 flakes are then applied as a dielectric top gate layer to realize a two-dimensional van der Waals stacked field-effect transistor, which uses MoS2 as a channel material. The fabricated transistor can be operated at a small drain-source voltage of 0.1 V and gate voltages within ranges of ±2 V, which exhibit a large on-off ratio over 107 at 0.5 V and a low subthreshold swing value of 80 mV/dec. Our work demonstrates that the few-layered MnAl2S4 can work as a dielectric layer to realize high-performance two-dimensional transistors, and thus broadens the research on high-κ 2D materials and may provide new opportunities in developing low-dimensional electronic devices with a low power consumption in the future.
RESUMO
Mechanisms of nucleation have been debated for more than a century, despite successes of classical nucleation theory. The nucleation process has been recently argued as involving a nonclassical mechanism (the "two-step" mechanism) in which an intermediate step occurs before the formation of a nascent ordered phase. However, a thorough understanding of this mechanism, in terms of both microscopic kinetics and thermodynamics, remains experimentally challenging. Here, in situ observations using transmission electron microscopy on a solid-state nucleation case indicate that early-stage crystallization can follow the non-classical pathway, yet proceed via a more complex manner in which multiple metastable states precede the emergence of a stable nucleus. The intermediate steps were sequentially isolated as spinodal decomposition of amorphous precursor, mass transport and structural oscillations between crystalline and amorphous states. Our experimental and theoretical analyses support the idea that the energetic favorability is the driving force for the observed sequence of events. Due to the broad applicability of solid-state crystallization, the findings of this study offer new insights into modern nucleation theory and a potential avenue for materials design.
RESUMO
Different functions can be directly realized by silicon (Si) in integrated electronic circuits. Although Si and silicon nitride (Si3N4) photonics have shown great potential in integrated optoelectronic devices, different functions, such as light generation, transparency for guided light, and light detection, cannot be simultaneously achieved only by Si or Si3N4. Second-order nonlinearity is another optical property they do not possess due to their centrosymmetric properties. Several kinds of 2D materials emerged recently and were transferred to specified photonic devices aimed at improving their nonlinear performance. However, the transferring methods are time-consuming, unable to achieve large-scale production, and will inevitably cause materials damage and introduce impurities at the interface. Herein, we demonstrate the direct growth of large-area homogeneous monolayer WS2via a physical vapor deposition method onto Si3N4 waveguides. The WS2 growth can be controlled mainly along the Si3N4 waveguides and the waveguides show an obvious enhancement of second-harmonic generation with the elongated WS2 coverage. The direct growth of WS2 endows Si3N4 integrated photonics with new nonlinear optical properties. As an alternative method of transferring 2D materials, the method we present here is compatible with large-scale integrated photonic fabrication, which lays the foundation for on-chip integrated optical fabrication and applications.
RESUMO
The nucleation and growth of bubbles within a solid matrix is a ubiquitous phenomenon that affects many natural and synthetic processes. However, such a bubbling process is almost "invisible" to common characterization methods because it has an intrinsically multiphased nature and occurs on very short time/length scales. Using in situ transmission electron microscopy to explore the decomposition of a solid precursor that emits gaseous byproducts, the direct observation of a complete nanoscale bubbling process confined in ultrathin 2D flakes is presented here. This result suggests a three-step pathway for bubble formation in the confined environment: void formation via spinodal decomposition, bubble nucleation from the spherization of voids, and bubble growth by coalescence. Furthermore, the systematic kinetics analysis based on COMSOL simulations shows that bubble growth is actually achieved by developing metastable or unstable necks between neighboring bubbles before coalescing into one. This thorough understanding of the bubbling mechanism in a confined geometry has implications for refining modern nucleation theories and controlling bubble-related processes in the fabrication of advanced materials (i.e., topological porous materials).
RESUMO
Heterogeneous ice nucleation on atmospheric aerosols strongly affects the earth's climate, and at the microscopic level, surface-irregularity-induced ice crystallization behaviors are common but crucial. Because of the lack of visual evidence and effective experimental methods, the mechanism of atomic-structure-dependent ice formation on aerosol surfaces is poorly understood. Here we chose highly oriented pyrolytic graphite (HOPG) to represent soot (a primary aerosol), and environmental scanning electron microscopy (ESEM) was performed for in situ observations of ice formation. We found that hexagonal ice crystals show an aligned growth pattern via a two-stage pathway with one a axis coinciding with the direction of atomic step edges on the HOPG surface. Additionally, the ice crystals grow at a noticeably higher speed along this direction. This study reveals the role of atomic surface defects in heterogeneous ice nucleation and may pave the way to control icing-related processes in practical applications.
RESUMO
Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials1-3, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.
RESUMO
Two-dimensional (2D) layered semiconductors have recently emerged as attractive building blocks for next-generation low-power nonvolatile memories. However, challenges remain in the controllable fabrication of bipolar resistive switching circuit components from these materials. Here, the experimental realization of lateral memtransistors from monolayer single-crystal molybdenum disulfide (MoS2) utilizing a focused helium ion beam is reported. Site-specific irradiation with the focused probe of a helium ion microscope creates a nanometer-scale defect-rich region, bisecting the MoS2 lattice. The reversible drift of these defects in the applied electric field modulates the resistance of the channel, enabling versatile memristive functionality. The device can reliably retain its resistance ratios and set/reset biases for 1180 switching cycles. Long-term potentiation and depression with sharp habituation are demonstrated. This work establishes the feasibility of ion irradiation for controllable fabrication of 2D memristive devices with promising key performance parameters, such as low power consumption. The applicability of these devices for synaptic emulation may address the demands of future neuromorphic architectures.
RESUMO
BACKGROUND: Bone wax is the most widely used hemostatic bone sealant because of its availability, ease of use, immediate action, and minimal adverse effects. Several complications have been reported to be associated with the use of bone wax, such as infection, osteohypertrophy, pain, granuloma formation, allergic reaction, and thrombosis. Here, we present a rare complication, namely, bone wax migration, which developed after a craniotomy on a patient who had a frontal sinus abnormality. CASE PRESENTATION: A 51-year-old woman complained of pain and swelling in her left eye accompanied by difficulty opening the left eyelid after undergoing a craniotomy. An examination revealed left eye proptosis with ptosis, eyelid swelling, and increases in intraorbital pressure and intraocular pressure (IOP). According to a CT and an MRI of the orbit, we found that the intraoperative bone wax had migrated to the orbit, thereby causing compression. We also found that the basal frontal sinus of the patient was congenitally defective, which may have induced the migration of the bone wax. Given that the patient recently underwent a craniotomy and given the risks associated with orbital surgery, she refused to undergo a surgery to remove the bone wax. Thus, the patient was administered mannitol intravenously daily, accompanied by topical Timolol, to reduce the intraorbital pressure and IOP. This treatment led to a gradual decrease in IOP and intraorbital pressure, and these parameters remained stable after treatment ended. During the 6-month follow-up, the best corrected visual acuity improved, and ptosis and restricted eye movements also improved significantly. CONCLUSIONS: We report a case of bone wax migration that developed after a craniotomy on a patient who had a congenital defect in the basal frontal sinus. Extra caution should be taken when using bone wax, and a comprehensive understanding of the patient's intracranial anatomy is important for decreasing the incidence of bone wax migration. Additionally, when a patient presents with symptoms of ocular compression, bone wax migration should be considered in addition to typical radiological changes.
Assuntos
Blefaroptose/etiologia , Craniotomia/efeitos adversos , Migração de Corpo Estranho/complicações , Seio Frontal/cirurgia , Órbita/patologia , Palmitatos/efeitos adversos , Ceras/efeitos adversos , Feminino , Seio Frontal/anormalidades , Humanos , Pessoa de Meia-Idade , Hipertensão Ocular/etiologia , Palmitatos/farmacocinética , Complicações Pós-Operatórias/etiologia , Ceras/farmacocinéticaRESUMO
Precise tunability of electronic properties of two-dimensional (2D) nanomaterials is a key goal of current research in this field of materials science. Chemical modification of layered transition metal dichalcogenides leads to the creation of heterostructures of low-dimensional variants of these materials. In particular, the effect of oxygen-containing plasma treatment on molybdenum disulfide (MoS2) has long been thought to be detrimental to the electrical performance of the material. We show that the mobility and conductivity of MoS2 can be precisely controlled and improved by systematic exposure to oxygen/argon plasma and characterize the material using advanced spectroscopy and microscopy. Through complementary theoretical modeling, which confirms conductivity enhancement, we infer the role of a transient 2D substoichiometric phase of molybdenum trioxide (2D-MoO x ) in modulating the electronic behavior of the material. Deduction of the beneficial role of MoO x will serve to open the field to new approaches with regard to the tunability of 2D semiconductors by their low-dimensional oxides in nano-modified heterostructures.