Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Nutr ; 11: 1393523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966415

RESUMO

Background and purpose: Nutrition is associated with tuberculosis drug-induced liver injury (TBLI). How dietary patterns relate to tuberculosis drug-induced liver injury is still unknown. The objective of this study is to explore the relation between dietary patterns and the risk of tuberculosis drug-induced liver injury. Methods: This cohort study was conducted at two hospitals in Shandong Province, China, between 2011 and 2013. A total of 605 tuberculosis patients were included in the final analysis. The blood aspartate aminotransferase or alanine aminotransferase level was monitored through the 6-month tuberculosis treatment. The semi-quantitative food frequency questionnaires were used to survey dietary intake in the second month of the tuberculosis treatment. The China Healthy Diet Index (CHDI), which was previously validated in the Chinese population, was used as an a priori dietary pattern. A posteriori dietary patterns were extracted by principal component analysis (PCA). Results: The CHDI was negatively associated with the risk of liver injury [adjusted odds ratio (aOR) per standard deviation (SD) (95% CI): 0.61 (0.40-0.94)] and liver dysfunction [aOR per SD (95% CI): 0.47 (0.35-0.64)] in the multivariate logistic model. A positive association between "Organ meat, poultry, and vegetable oil" dietary pattern scores (extracted by PCA) and the risk of liver injury [aOR (95% CI): 3.02 (1.42-6.41)] and liver dysfunction [aOR (95% CI): 1.83 (1.09-3.05)] was observed. Conclusion: In conclusion, a high CHDI score was a protective factor for tuberculosis drug-induced liver injury, while the "Organ meat, poultry, and vegetable oil" dietary pattern, which was rich in organ meat, poultry, and vegetable oil and low in vegetables, was an independent risk factor for tuberculosis drug-induced liver injury.

2.
Environ Pollut ; 333: 122096, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37352961

RESUMO

Spartina alterniflora, as an invasive alien species, has been studied in terms of its potential use in immobilization and synergistic photocatalysis against dye contaminants for the first time. Microscopic characterization and Fourier transform infrared (FTIR) spectroscopy results confirmed the presence of abundant 3D wormhole-like pore structures and active functional groups (-OH, -NH2, CO, Si-O-Si). Moreover, the existence of SiO2 was connected the metal oxides with polar groups, which could proceed entire reaction procedure subsequently. Transition metal oxides (such as Fe2O3, TiO2, MnO2 and NiO) contained in photocatalysts might effectively promote the organics decomposition by the visible light excitation. The highest dye removal efficiency of 92.03% could be reached with the addition of 0.02 g photocatalyst. The capture experiment confirmed that the h+ was the dominant active substance during the photocatalytic degradation process. Density functional theory (DFT) calculations verified that the functional groups (-COOH, -OH and -NH2) were exceptional adsorption sites for catalyst, and the calculated adsorption energy were all negative with the order of SRHH-NH2 (-2.712688 eV) < SRHH-OH (-2.075601 eV) < SRHH-COOH (-1.283141 eV), which confirmed that interface interaction effectively bound cationic dyes through the formation of hydrogen bonds at the catalysts-water interface, further accelerating the reaction rate of the entire photocatalytic reduction of dye molecules. Therefore, this work provides a feasible synthesis of natural photocatalysts using solid waste, which suggests excellent adsorption and photocatalysis properties for the treatment of organic industrial pollutant.


Assuntos
Poluentes Ambientais , Óxidos , Dióxido de Silício , Compostos de Manganês , Luz , Catálise
3.
Comput Intell Neurosci ; 2022: 3716829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814556

RESUMO

The incidence rate of peptic ulcer is increasing gradually. Medical images can meet the needs of patients as an auxiliary diagnosis and treatment method for peptic ulcer. However, in the long-term treatment, the actual effect is average, and the diagnosis effect of gastrointestinal diseases will gradually deteriorate. In this paper, we use an image enhancement algorithm to study the mechanism of peptic ulcer from the perspective of a medical image. In this paper, 56 images of children with peptic ulcer were selected, and the gastroscopy based on the image enhancement algorithm provided technical support for the rapid diagnosis of patients with peptic ulcer. Experimental results show that the clinical features of peptic ulcer have different characteristics according to the age difference of patients, which can play a positive role in promoting the treatment of patients of different ages.


Assuntos
Úlcera Péptica , Algoritmos , Criança , Gastroscopia/métodos , Humanos , Aumento da Imagem , Úlcera Péptica/diagnóstico por imagem , Úlcera Péptica/epidemiologia
4.
Materials (Basel) ; 12(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018517

RESUMO

In this study, modified activated fishbone charcoal (MAFC) was successfully prepared to remove emulsified oil from oily wastewater. Various characteristic techniques, including SEM, XRD, FTIR, and BET, were employed to investigate the morphology, texture, and surface properties of as-prepared samples. BET results demonstrated that the specific surface area of fishbone charcoal increased from 69.8 m2/g to 206.0 m2/g after treatment with K2CO3 as an activating agent, while the total pore volume of MAFC increased from 0.003 cm3/g to 0.3 cm3/g, accompanied by the formation of abundant pore structures. It was observed that 90.1% of emulsified oil (100 mg/L) was successfully removed by MAFC under our experimental conditions. The results of a kinetic and isotherm model analysis indicated that the adsorption experimental data were not only consistent with the Langmuir adsorption isotherm but were also well-described by the pseudo-second-order adsorption model. It is expected that this highly efficient and inexpensive MAFC can be a promising bio-adsorbent for removing organic pollutants from industrial wastewater.

5.
Materials (Basel) ; 12(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641966

RESUMO

This study, for the first time, rendered crab shell activated biochar modified by potassium hydroxide (KOH) impregnation (CSAB), revealing a new potential application in the removal of diesel oil from oily wastewater. The structural characteristics of crab shell biochar (CSB) and CSAB were investigated by SEM, and the crystal structure and optical properties of as-prepared samples were analyzed using XRD and FTIR. Results showed that CSAB had stratified surface structure morphology, abundant functional groups, and that its high specific surface area could reach up to 2441 m²/g, which was about eight times larger than that of untreated CSB (307 m²/g). An adsorption isotherm study indicated that the actual adsorption process both of CSAB and CSB were found to fit better with the Freundlich equation. Moreover, chemical interaction controlled the adsorption kinetics efficiency while the adsorption equilibrium capacity was 93.9 mg/g. Due to its highly developed pore structure, unique surface characteristics, and effective adsorption performance, this low-cost activated carbon had the potential to serve as an efficient adsorbent for water pollution purification.

6.
RSC Adv ; 9(65): 38280-38288, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-35541824

RESUMO

In this study, waste mussel shells were used to remove dyes in aqueous solution. Mussel shell was prepared into mussel shell biochar (MSB), which was used as a carrier to support Bi2MoO6. A novel Bi2MoO6/MSB composite photocatalyst was developed by the hydrothermal synthesis method. The as-synthesized sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption-desorption method, Fourier transform infrared spectroscopy (FTIR) and UV-vis diffuse reflectance spectra (DRS). Then, the photocatalytic activity of the prepared samples was determined by testing the photodegradation of Rhodamine B (RhB) under visible-light (λ > 420 nm) irradiation. The pre exfoliated layered MSB was an excellent supporting matrix for the growth of Bi2MoO6 nanoflakes. The obtained hierarchical Bi2MoO6/MSB composites exhibited significantly enhanced performance for photocatalytic degradation of RhB compared with pure Bi2MoO6 under visible light irradiation because of the improved electron-hole pair separation, which boosted the number of exposed catalytic active sites. Moreover, the Bi2MoO6/MSB composite photocatalyst is of good stability and reusability.

7.
Materials (Basel) ; 11(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217033

RESUMO

In this study, carbonized kelp biochar (AKB) modified by KOH impregnation and photocatalytic Bi2MoO6/AKB composite (BKBC) nanomaterials were the first time successfully synthesized for efficient removal of dyes in aqueous solution. BET, XRD, FT-IR, and SEM were employed to characterize as-prepared samples. UV-vis and other test results indicated that the removal efficiency of methylene blue (MB) was 61.39% and 94.12% for BKBC and AKB, respectively, which was up to 13 times and 20 times higher in comparison with pure Bi2MoO6 (PBM). In addition, the equilibrium adsorption capacity of MB could reach up to 324.1 mg/g for AKB. This high dyes adsorption performance could be likely attributed to its high specific surface area (507.177 m²/g) and its abundant presence of various functional groups such as ⁻OH and =C⁻H on AKB. Particularly, the existing of amorphous carbon and transition metal oxides, such as Fe2O3 and Mn5O8, could be beneficial for the photodegradation of MB for AKB. Meanwhile, experimental data indicated that adsorption kinetics complied with the pseudo-second order model well, and all of the tests had satisfactory results in terms of the highly efficient adsorption and photodegradation activity of AKB nanomaterials, which suggested its great potential in wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA