Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Int J Biol Sci ; 20(7): 2370-2387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725841

RESUMO

The pathogenesis of Intervertebral Disc Degeneration (IDD) is complex and multifactorial, with cellular senescence of nucleus pulposus (NP) cells and inflammation playing major roles in the progression of IDD. The stimulator of interferon genes (STING) axis is a key mediator of inflammation during infection, cellular stress, and tissue damage. Here, we present a progressive increase in STING in senescent NP cells with the degradation disorder. The STING degradation function in normal NP cells can prevent IDD. However, the dysfunction of STING degradation through autophagy causes the accumulation and high expression of STING in senescent NP cells as well as inflammation continuous activation together significantly promotes IDD. In senescent NP cells and intervertebral discs (IVDs), we found that STING autophagy degradation was significantly lower than that of normal NP cells and IVDs when STING was activated by 2'3'-cGAMP. Also, the above phenomenon was found in STINGgt/gt, cGAS-/- mice with models of age-induced, lumbar instability-induced IDD as well as found in the rat caudal IVD puncture models. Taken together, we suggested that the promotion of STING autophagy degradation in senescent NP Cells demonstrated a potential therapeutic modality for the treatment of IDD.


Assuntos
Autofagia , Senescência Celular , Degeneração do Disco Intervertebral , Proteínas de Membrana , Núcleo Pulposo , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Animais , Autofagia/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Senescência Celular/fisiologia , Ratos , Masculino , Ratos Sprague-Dawley , Humanos , Camundongos Endogâmicos C57BL
2.
Front Public Health ; 12: 1371825, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699422

RESUMO

Aims: To investigate the association between socioeconomic position (SEP) and sensory impairments (SIs). Methods: We used data from the China Health and Retirement Longitudinal Study (CHARLS) (2015). Logistic regressions estimated the odds ratio for associations of SEP with SIs. In addition, Mendelian randomization (MR) analysis was conducted to assess the causal relationship between them with the inverse variance weighting (IVW) estimator. MR-Egger, simple median, weighted median, maximum likelihood, and robust adjusted profile score were employed for sensitivity analyses. Results: In the observational survey, we enrolled 19,690 individuals aged 45 and above. SEP was negatively associated with SIs. Adjusted odds of vision impairment were higher for illiterate (1.50; 95%CI: 1.19, 1.91), less than elementary school diploma (1.76; 95%CI: 1.39, 2.25), middle school diploma (1.53; 95%CI: 1.21, 1.93) and lower income (all p < 0.001). The odds of hearing impairment were significantly higher for people with less than a high school diploma than those with a college degree or higher diploma, for agricultural workers than non-agricultural workers, and for people in low-income families (p < 0.01). The MR analysis also showed that occupation was associated with HI (1.04, 95%CI: 1.01, 1.09, p < 0.05) using IVW. Conclusion: We found that both observational and causal evidence supports the theory that SEP can result in SIs and that timely discovery, targeted management, and education can prevent SIs among middle-aged and older adults.


Assuntos
Análise da Randomização Mendeliana , Humanos , China/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Longitudinais , Classe Social , Transtornos de Sensação/epidemiologia , Fatores Socioeconômicos , População do Leste Asiático
3.
Aging (Albany NY) ; 162024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713160

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and emerging evidence indicates that trigeminal nerve electrical stimulation (TNS) is a promising therapeutic intervention for neurological impairment following TBI. However, the precise mechanisms underlying the neuroprotective effects of TNS in TBI are poorly understood. Thus, the objective of this study was to investigate the potential involvement of the orexin-A (OX-A)/orexin receptor 1 (OX1R) mediated TLR4/NF-κB/NLRP3 signaling pathway in the neuroprotective effects of TNS in rats with TBI. METHODS: Sprague-Dawley rats were randomly assigned to four groups: sham, TBI, TBI+TNS+SB334867, and TBI+TNS. TBI was induced using a modified Feeney's method, and subsequent behavioral assessments were conducted to evaluate neurological function. The trigeminal nerve trunk was isolated, and TNS was administered following the establishment of the TBI model. The levels of neuroinflammation, brain tissue damage, and proteins associated with the OX1R/TLR4/NF-κB/NLRP3 signaling pathway were assessed using hematoxylin-eosin staining, Nissl staining, western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence techniques. RESULTS: The findings of our study indicate that TNS effectively mitigated tissue damage, reduced brain edema, and alleviated neurological deficits in rats with TBI. Furthermore, TNS demonstrated the ability to attenuate neuroinflammation levels and inhibit the expression of proteins associated with the TLR4/NF-κB/NLRP3 signaling pathway. However, it is important to note that the aforementioned effects of TNS were reversible upon intracerebroventricular injection of an OX1R antagonist. CONCLUSION: TNS may prevent brain damage and relieve neurological deficits after a TBI by inhibiting inflammation, possibly via the TLR4/NF-κB/NLRP3 signaling pathway mediated by OX-A/OX1R.

4.
Ecotoxicol Environ Saf ; 278: 116424, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723382

RESUMO

BACKGROUND: Epidemiological studies have reported associations between heavy metals and renal function. However, longitudinal studies are required to further validate these associations and explore the interactive effects of heavy metals on renal function and their directional influence. METHOD: This study, conducted in Northeast China from 2016 to 2021, included a four-time repeated measures design involving 384 participants (1536 observations). Urinary concentrations of chromium (Cr), cadmium (Cd), manganese (Mn), and lead (Pb) were measured, along with renal biomarkers including urinary microalbumin (umAlb), urinary albumin-to-creatinine ratio (UACR), N-acetyl-ß-D-glucosaminidase (NAG), and ß2-microglobulin (ß2-MG) levels. Estimated glomerular filtration rate (eGFR) was calculated. A Linear Mixed Effects Model (LME) examined the association between individual metal exposure and renal biomarkers. Subsequently, Quantile g-computation and Bayesian Kernel Machine Regression (BKMR) models assessed the overall effects of heavy metal mixtures. Marginal Effect models examined the directional impact of metal interactions in the BKMR on renal function. RESULT: Results indicate significant impacts of individual and combined exposures of Cr, Cd, Pb, and Mn on renal biomarkers. Metal interactions in the BKMR model were observed, with synergistic effects of Cd-Cr on NAG, umAlb, UACR; Cd-Pb on NAG, UACR; Pb-Cr on umAlb, UACR, eGFR-MDRD, eGFR-EPI; and an antagonistic effect of Mn-Pb-Cr on UACR. CONCLUSION: Both individual and combined exposures to heavy metals are associated with renal biomarkers, with significant synergistic interactions leading to renal damage. Our findings elucidate potential interactions among these metals, offering valuable insights into the mechanisms linking multiple metal exposures to renal injury.

5.
J Cancer Res Clin Oncol ; 150(4): 206, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644421

RESUMO

PURPOSE: Periodontitis-associated bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are closely linked to the risk of oral squamous cell carcinoma (OSCC). Emerging studies have indicated that another common periodontal pathogen, Prevotella intermedia (P. intermedia), is enriched in OSCC and could affect the occurrence and progression of OSCC. Our aim is to determine the effects of P. intermedia on the progression of OSCC and the role of antibiotics in reversing these effects. METHODS: In this study, a murine xenograft model of OSCC was established, and the mice were injected intratumorally with PBS (control group), P. intermedia (P.i group), or P. intermedia combined with an antibiotic cocktail administration (P.i + ABX group), respectively. The effects of P. intermedia and ABX administration on xenograft tumor growth, invasion, angiogenesis, and metastasis were investigated by tumor volume measurement and histopathological examination. Enzyme-linked immunosorbent assay (ELISA) was used to investigate the changes in serum cytokine levels. Immunohistochemistry (IHC) was adopted to analyze the alterations in the levels of inflammatory cytokines and infiltrated immune cells in OSCC tissues of xenograft tumors. Transcriptome sequencing and analysis were conducted to determine differential expression genes among various groups. RESULTS: Compared with the control treatment, P. intermedia treatment significantly promoted tumor growth, invasion, angiogenesis, and metastasis, markedly affected the levels of inflammatory cytokines, and markedly altered M2 macrophages and regulatory T cells (Tregs) infiltration in the tumor microenvironment. However, ABX administration clearly abolished these effects of P. intermedia. Transcriptome and immunohistochemical analyses revealed that P. intermedia infection increased the expression of interferon-stimulated gene 15 (ISG15). Correlation analysis indicated that the expression level of ISG15 was positively correlated with the Ki67 expression level, microvessel density, serum concentrations and tissue expression levels of inflammatory cytokines, and quantities of infiltrated M2 macrophages and Tregs. However, it is negatively correlated with the quantities of infiltrated CD4+ and CD8+ T cells. CONCLUSION: In conclusion, intratumoral P. intermedia infection aggravated OSCC progression, which may be achieved through upregulation of ISG15. This study sheds new light on the possible pathogenic mechanism of intratumoral P. intermedia in OSCC progression, which could be a prospective target for OSCC prevention and treatment.


Assuntos
Citocinas , Progressão da Doença , Neoplasias Bucais , Prevotella intermedia , Ubiquitinas , Regulação para Cima , Animais , Camundongos , Citocinas/metabolismo , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/microbiologia , Ubiquitinas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Infecções por Bacteroidaceae/microbiologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/tratamento farmacológico , Antibacterianos/farmacologia
6.
J Hazard Mater ; 470: 134174, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574661

RESUMO

Designing CO oxidation catalysts for complex flue gases conditions is particularly challenging in fire scenarios. Traditional flue gas simulations use a few representative gases but often fail to adequately evaluate catalyst performance in real-world combustion conditions. In this study, we developed doping strategies using La and Cu to enhance the water resistance of Co3O4 catalysts. Catalyst 0.1La-Co3O4-CuO/CeO2 exhibits exceptional low-temperature catalytic activity, achieving 100% conversion at 130 °C. This enhancement is largely due to the introduction of La, which increases the active Co3+/Co2+ ratio and suppresses hydroxyl group formation on the Co3O4 surface. Cu doping also changes the Co3O4 lattice structure, forming Cu+ as active sites and enhancing the activity at low temperatures. For the first time, steady-state tube furnace and fixed bed were employed to evaluate the catalytic performance of CO in actual combustion atmosphere. Catalyst 0.1La-Co3O4-CuO/CeO2 maintains excellent catalytic efficiency (T100 = 120 °C) under well-ventilated conditions. However, its activity significantly decreases in poorly ventilated environments, due to the competitive adsorption of small molecules at active sites, such as acetone, commonly found in smoke. This study provides valuable insights for designing water-resistant, low-temperature, non-noble metal catalysts and offers a methodology for evaluating CO catalytic activity in real-world environments.

7.
J Phys Chem Lett ; 15(15): 4158-4166, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38597419

RESUMO

All-inorganic CsPbI2Br perovskite is striking as a result of the reasonable band gap and thermal stability. However, the notorious air instability, unsatisfactory conversion efficiencies, and toxic water-soluble Pb2+ ions have greatly limited the further development of CsPbI2Br-based devices. Herein, a facile strategy is developed to prepare efficient and air-stable CsPbI2Br-based perovskite solar cells (PSCs) with in situ lead leakage protection. With the introduction of 2,2'-dihydroxy-4,4'-dimethoxy-5,5'-disulfobenzophenone disodium salt (BP-9) into the CsPbI2Br precursor solution, the crystallization of perovskite can be regulated at a reduced trap density, the uncoordinated Pb2+ ions and electron-rich defects in the structure can be passivated to suppress non-radiative recombination, and the energy level arrangement can be optimized to improve charge carrier transport. Consequently, the optimized PSC achieved a championship efficiency of 17.11%, accompanied by negligible J-V hysteresis and remarkably improved air stability. More importantly, the strong chelation of BP-9 with water-soluble Pb2+ ions minimizes the leakage of toxic lead in the perovskite structure.

8.
Carbon Balance Manag ; 19(1): 14, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668891

RESUMO

BACKGROUND: Global climate change is one of the major challenges facing the world today, and forests play a crucial role as significant carbon sinks and providers of ecosystem services in mitigating climate change and protecting the environment. China, as one of the largest developing countries globally, owns 60% of its forest resources collectively. Evaluating the carbon sequestration cost of collective forests not only helps assess the contribution of China's forest resources to global climate change mitigation but also provides important evidence for formulating relevant policies and measures. RESULTS: Over the past 30 years, the carbon sequestration cost of collective forests in China has shown an overall upward trend. Except for coastal provinces, southern collective forest areas, as well as some southwestern and northeastern regions, have the advantage of lower carbon sequestration costs. Furthermore, LSTM network predictions indicate that the carbon sequestration cost of collective forests in China will continue to rise. By 2030, the average carbon sequestration cost of collective forests is projected to reach 125 CNY per ton(= 16.06 Euros/t). Additionally, there is spatial correlation in the carbon sequestration cost of collective forests. Timber production, labor costs, and labor prices have negative spatial spillover effects on carbon sequestration costs, while land opportunity costs, forest accumulation, and rural resident consumption have positive spatial spillover effects. CONCLUSION: The results of this study indicate regional disparities in the spatial distribution of carbon sequestration costs of collective forests, with an undeniable upward trend in future cost growth. It is essential to focus on areas with lower carbon sequestration costs and formulate targeted carbon sink economic policies and management measures to maximize the carbon sequestration potential of collective forests and promote the sustainable development of forestry.

9.
Front Biosci (Landmark Ed) ; 29(4): 146, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682193

RESUMO

The ocular surface microenvironment, containing the cornea, conjunctiva, and lacrimal gland, constitutes the mucosal frontline of the eye and houses a myriad of immune cells. As a part of unconventional T cells, gamma delta (γδ) T cells differ in the development and functions from canonical alpha beta (αß) T cells. They are predominantly situated in mucosal sites throughout the body, including ocular surface tissues. Recent research has elucidated that γδ T cells serve as the primary interleukin-17A (IL-17A) source in the conjunctiva. They play a pivotal role in preserving ocular surface homeostasis and exhibit both protective and pathogenic roles in ocular surface diseases. This review delves into the general profiles of γδ T cells, their distribution in ocular surface tissues, and consolidates current insights into their functions in different conditions including dry eye disease, infectious keratitis, corneal wound healing, anterior chamber-associated immune deviation, allergic conjunctival disease, and diabetic ocular surface disease. The aim is to provide a systemic perspective on γδ T cells in the ocular surface microenvironment and outline potential directions for future studies.


Assuntos
Homeostase , Humanos , Homeostase/imunologia , Túnica Conjuntiva/imunologia , Animais , Oftalmopatias/imunologia , Linfócitos Intraepiteliais/imunologia , Córnea/imunologia , Síndromes do Olho Seco/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
10.
Cell Biosci ; 14(1): 47, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594782

RESUMO

BACKGROUND: Brain function and neuronal activity depend on a constant supply of blood from the cerebral circulation. The cerebral venous system (CVS) contains approximately 70% of the total cerebral blood volume; similar to the cerebral arterial system, the CVS plays a prominent role in the maintenance of central nervous system (CNS) homeostasis. Impaired venous autoregulation, which can appear in forms such as cerebral venous congestion, may lead to metabolic abnormalities in the brain, causing severe cerebral functional defects and even chronic tinnitus. However, the role of cerebral venous congestion in the progression of tinnitus is underrecognized, and its pathophysiology is still incompletely understood. This study elucidated the specific pathogenetic role of cerebral venous congestion in the onset and persistence of tinnitus and the possible neurophysiological mechanisms. RESULTS: We found that a rat model of cerebral venous congestion exhibited tinnitus-like behavioral manifestations at 14 days postoperatively; from that point onward, they showed signs of persistent tinnitus without significant hearing impairment. Subsequent neuroimaging and neurochemical findings showed CNS homeostatic plasticity disturbance in rats with cerebral venous congestion, reflected in increased neural metabolic activity, ultrastructural synaptic changes, upregulated synaptic efficacy, reduced inhibitory synaptic transmission (due to GABA deficiency), and elevated expression of neuroplasticity-related proteins in central auditory and extra-auditory pathways. CONCLUSION: Collectively, our data suggest that alternations in CNS homeostatic plasticity may play a vital role in tinnitus pathology caused by cerebral venous congestion. These findings provide a new perspective on tinnitus related to cerebral venous congestion and may facilitate the development of precise interventions to interrupt its pathogenesis.

11.
Cell Metab ; 36(5): 984-999.e8, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38642552

RESUMO

The relevance of biopterin metabolism in resistance to immune checkpoint blockade (ICB) therapy remains unknown. We demonstrate that the deficiency of quinoid dihydropteridine reductase (QDPR), a critical enzyme regulating biopterin metabolism, causes metabolite dihydrobiopterin (BH2) accumulation and decreases the ratio of tetrahydrobiopterin (BH4) to BH2 in pancreatic ductal adenocarcinomas (PDACs). The reduced BH4/BH2 ratio leads to an increase in reactive oxygen species (ROS) generation and a decrease in the distribution of H3K27me3 at CXCL1 promoter. Consequently, myeloid-derived suppressor cells are recruited to tumor microenvironment via CXCR2 causing resistance to ICB therapy. We discovered that BH4 supplementation is capable to restore the BH4/BH2 ratio, enhance anti-tumor immunity, and overcome ICB resistance in QDPR-deficient PDACs. Tumors with lower QDPR expression show decreased responsiveness to ICB therapy. These findings offer a novel strategy for selecting patient and combining therapies to improve the effectiveness of ICB therapy in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Humanos , Animais , Camundongos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos C57BL , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Feminino , Masculino , Espécies Reativas de Oxigênio/metabolismo
12.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564303

RESUMO

People with HIV (PWH) have a higher age-adjusted mortality due to chronic immune activation and age-related comorbidities. PWH also have higher rates of clonal hematopoiesis (CH) than age-matched non-HIV cohorts; however, risk factors influencing the development and expansion of CH in PWH remain incompletely explored. We investigated the relationship between CH, immune biomarkers, and HIV-associated risk factors (CD4+ and CD8+ T cells, nadir CD4+ count, opportunistic infections [OIs], and immune reconstitution inflammatory syndrome [IRIS]) in a diverse cohort of 197 PWH with median age of 42 years, using a 56-gene panel. Seventy-nine percent had a CD4+ nadir below 200 cells/µL, 58.9% had prior OIs, and 34.5% had a history of IRIS. The prevalence of CH was high (27.4%), even in younger individuals, and CD8+ T cells and nadir CD4+ counts strongly associated with CH after controlling for age. A history of IRIS was associated with CH in a subgroup analysis of patients 35 years of age and older. Inflammatory biomarkers were higher in CH carriers compared with noncarriers, supporting a dysregulated immune state. These findings suggest PWH with low nadir CD4+ and/or inflammatory complications may be at high risk of CH regardless of age and represent a high-risk group that could benefit from risk reduction and potentially targeted immunomodulation.


Assuntos
Hematopoiese Clonal , Infecções por HIV , Humanos , Adulto , Masculino , Feminino , Hematopoiese Clonal/genética , Infecções por HIV/imunologia , Infecções por HIV/complicações , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Síndrome Inflamatória da Reconstituição Imune/imunologia , Contagem de Linfócito CD4 , Fatores de Risco , Linfócitos T CD4-Positivos/imunologia , Biomarcadores , Adulto Jovem , Inflamação
14.
Appl Microbiol Biotechnol ; 108(1): 313, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683244

RESUMO

To avoid the unreasonable use of chemical fertilizer, an environmentally friendly means of improving soil fertility is required. This study explored the role of the plant growth-promoting rhizosphere bacteria (PGPR) strain Bacillus velezensis SAAS-63 in improving nutrient stress in lettuce. Compared with no inoculation, B. velezensis SAAS-63 inoculants exhibited significantly increased fresh weight, root length, and shoot height under nutrient deficiency, as well as improved antioxidant activities and proline contents. The exogenous addition of B. velezensis SAAS-63 also significantly increased the accumulation of macroelements and micronutrients in lettuce. To elucidate the resistance mechanisms induced by B. velezensis SAAS-63 under nutrient stress, high-throughput sequencing and multi-omics analysis were performed. Inoculation with B. velezensis SAAS-63 altered the microbial community of the rhizosphere and increased the relative abundances of Streptomyces, Actinoallomurus, Verrucomicrobia, and Chloroflexi. It is worth noting that the inoculant SAAS-63 can affect plant rhizosphere metabolism. The inoculant changed the metabolic flow of phenylpropanoid metabolic pathway under nutrient deficiency and promoted phenylalanine to participate more in the synthesis of lignin precursors and coumarin substances by inhibiting the synthesis of flavone and isoflavone, thus improving plant resistance. This study showed that the addition of inoculant SAAS-63 could help plants recruit microorganisms to decompose and utilize trehalose and re-established the carbon metabolism of the plant rhizosphere. Additionally, microbes were found to be closely related to the accumulation of metabolites based on correlation analysis. The results indicated that the addition of PGPRs has an important role in regulating soil rhizosphere microbes and metabolism, providing valuable information for understanding how PGPRs affect complex biological processes and enhance plant adaptation to nutrient deficiency. KEY POINTS: • Inoculation with SAAS-63 significantly promoted plant growth under nutrient-deficient conditions • Inoculation with SAAS-63 affected rhizosphere microbial diversity and community structure • Inoculation with SAAS-63 affected plant rhizosphere metabolism and induced plants to synthesize substances that resist stress.


Assuntos
Bacillus , Lactuca , Nutrientes , Rizosfera , Microbiologia do Solo , Estresse Fisiológico , Bacillus/metabolismo , Bacillus/genética , Lactuca/microbiologia , Lactuca/crescimento & desenvolvimento , Nutrientes/metabolismo , Raízes de Plantas/microbiologia , Microbiota , Multiômica
15.
Exp Hematol Oncol ; 13(1): 33, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515216

RESUMO

BACKGROUND: Oral microbial dysbiosis contributes to the development of oral squamous cell carcinoma (OSCC). Our previous study showed that Prevotella intermedia (P. intermedia) were enriched in the oral mucosal surface, plaque, and saliva of patients with OSCC. Intratumoral microbiome could reshape the immune system and influence the development of various tumors. However, the invasion status of human OSCC tissues by P. intermedia and the pathway through which intratumoral P. intermedia potentiates tumor progression remain unexplored. METHODS: P. intermedia in human OSCC or normal tissues was detected by FISH. A mouse OSCC cell line SCC7 was adopted to investigate the effects of heat-killed P. intermedia treatment on cell proliferation, invasion, and cytokine release by using CCK-8 assay, transwell invasion assay and ELISA. Moreover, we established a mouse transplanted tumor model by using SCC7 cells, injected heat-killed P. intermedia into tumor tissues, and investigated the effects of heat-killed P. intermedia on tumor growth, invasion, cytokine levels, immune cell infiltrations, and expression levels by using gross observation, H&E staining, ELISA, immunohistochemistry, mRNA sequencing, and transcriptomic analysis. RESULTS: Our results indicated that P. intermedia were abundant in OSCC and surrounding muscle tissues. Heat-killed P. intermedia promoted SCC7 cell proliferation, invasion and proinflammatory cytokine secretions, accelerated transplanted tumor growth in mice, exacerbate muscle and perineural invasion of OSCC, elevated the serum levels of IL-17A, IL-6, TNF-α, IFN-γ, and PD-L1, induced Treg cells M2 type macrophages in mouse transplanted tumors. The data of transcriptomic analysis revealed that heat-killed P. intermedia increased the expression levels of inflammatory cytokines and chemokines while reduced the expression levels of some tumor suppressor genes in mouse transplanted tumors. Additionally, IL-17 signaling pathway was upregulated whereas GABAergic system was downregulated by heat-killed P. intermedia treatment. CONCLUSIONS: Taken together, our results suggest that P. intermedia could inhibit the expression of tumor suppressors, alter the tumor microenvironment, and promote the progression of OSCC.

17.
Ann Med ; 56(1): 2314236, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38442299

RESUMO

BACKGROUND: The burden of carbapenem-resistant gram-negative bacteria (CRGNB) among solid organ transplant (SOT) recipients has not been systematically explored. Here, we discern the risk factors associated with CRGNB infection and colonization in SOT recipients. METHODS: This study included observational studies conducted among CRGNB-infected SOT patients, which reported risk factors associated with mortality, infection or colonization. Relevant records will be searched in PubMed, Embase and Web of Science for the period from the time of database construction to 1 March 2023. RESULTS: A total of 23 studies with 13,511 participants were included, enabling the assessment of 27 potential risk factors. The pooled prevalence of 1-year mortality among SOT recipients with CRGNB was 44.5%. Prolonged mechanical ventilation, combined transplantation, reoperation and pre-transplantation CRGNB colonization are salient contributors to the occurrence of CRGNB infections in SOT recipients. Renal replacement therapy, post-LT CRGNB colonization, pre-LT liver disease and model for end-stage liver disease score increased the risk of infection. Re-transplantation, carbapenem use before transplantation and ureteral stent utilization increaesd risk of CRGNB colonization. CONCLUSION: Our study demonstrated that SOT recipients with CRGNB infections had a higher mortality risk. Invasive procedure may be the main factor contribute to CRGNB infection.


Assuntos
Doença Hepática Terminal , Transplante de Órgãos , Adulto , Humanos , Índice de Gravidade de Doença , Bactérias Gram-Negativas , Carbapenêmicos/uso terapêutico , Transplante de Órgãos/efeitos adversos , Estudos Observacionais como Assunto
18.
Ecotoxicol Environ Saf ; 274: 116178, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461577

RESUMO

BACKGROUND: The impact of heavy metals on liver function has been examined in numerous epidemiological studies. However, these findings lack consistency and longitudinal validation. METHODS: In this study, we conducted three follow-up surveys with 426 participants from Northeast China. Blood and urine samples were collected, along with questionnaire information. Urine samples were analyzed for concentrations of four metals (chromium [Cr], cadmium [Cd], lead [Pb], and manganese [Mn]), while blood samples were used to measure five liver function indicators (alanine aminotransferase [ALT], aspartate aminotransferase [AST], albumin [ALB], globulin [GLB], and total protein [TP]). We utilized a linear mixed-effects model (LME) to explore the association between individual heavy metal exposure and liver function. Joint effects of metal mixtures were investigated using quantile g-computation and Bayesian kernel machine regression (BKMR). Furthermore, we employed BKMR and Marginal Effect models to examine the interaction effects between metals on liver function. RESULTS: The LME results demonstrated a significant association between urinary heavy metals (Cr, Cd, Pb, and Mn) and liver function markers. BKMR results indicated positive associations between heavy metal mixtures and ALT, AST, and GLB, and negative associations with ALB and TP, which were consistent with the g-comp results. Synergistic effects were observed between Cd-Cr on ALT, Mn-Cr and Cr-Pb on ALB, while an antagonistic effect was found between Mn-Pb and Mn-Cd on ALB. Additionally, synergistic effects were observed between Mn-Cr on GLB and Cd-Cr on TP. Furthermore, a three-way antagonistic effect of Mn-Pb-Cr on ALB was identified. CONCLUSION: Exposure to heavy metals (Cr, Cd, Mn, Pb) is associated with liver function markers, potentially leading to liver damage. Moreover, there are joint and interaction effects among these metals, which warrant further investigation at both the population and mechanistic levels.


Assuntos
Cádmio , Metais Pesados , Humanos , Cádmio/toxicidade , Teorema de Bayes , Chumbo/farmacologia , Metais Pesados/farmacologia , Manganês/toxicidade , Cromo/farmacologia , Fígado
19.
Cell Stem Cell ; 31(4): 455-466.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38508195

RESUMO

For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Animais , Macaca mulatta/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Lentivirus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Células-Tronco Hematopoéticas , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética
20.
Leukemia ; 38(5): 1143-1155, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467768

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) maintain blood-forming and immune activity, yet intrinsic regulators of HSPCs remain elusive. STAT3 function in HSPCs has been difficult to dissect as Stat3-deficiency in the hematopoietic compartment induces systemic inflammation, which can impact HSPC activity. Here, we developed mixed bone marrow (BM) chimeric mice with inducible Stat3 deletion in 20% of the hematopoietic compartment to avoid systemic inflammation. Stat3-deficient HSPCs were significantly impaired in reconstitution ability following primary or secondary bone marrow transplantation, indicating hematopoietic stem cell (HSC) defects. Single-cell RNA sequencing of Lin-ckit+Sca1+ BM cells (LSKs) revealed aberrant activation of cell cycle, p53, and interferon (IFN) pathways in Stat3-deficient HSPCs. Stat3-deficient LSKs accumulated γH2AX and showed increased expression of DNA sensors and type-I IFN (IFN-I), while treatment with A151-ODN inhibited expression of IFN-I and IFN-responsive genes. Further, the blockade of IFN-I receptor signaling suppressed aberrant cell cycling, STAT1 activation, and nuclear p53 accumulation. Collectively, our results show that STAT3 inhibits a deleterious autocrine IFN response in HSCs to maintain long-term HSC function. These data signify the importance of ensuring therapeutic STAT3 inhibitors are targeted specifically to diseased cells to avoid off-target loss of healthy HSPCs.


Assuntos
Comunicação Autócrina , Células-Tronco Hematopoéticas , Interferon Tipo I , Fator de Transcrição STAT3 , Animais , Fator de Transcrição STAT3/metabolismo , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA